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Where We’ve Been and Where We’re Going...

Last Week
I inference and estimator properties
I point estimates, confidence intervals

This Week
I hypothesis testing
I what is regression?
I nonparametric and linear regression

Next Week
I inference for simple regression
I properties of ordinary least squares

Long Run
I probability → inference → regression → causal inference
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1 Hypothesis Testing
Terminology and Procedure
One-Sided Tests
Connections
Power

2 p-values
Mechanics
Multiple Testing
Fun With Salmon
The Significance of Significance

3 What is Regression?
Conditional Expectation Functions
Nonparametric Regression
Best Linear Predictor
Ordinary Least Squares

4 Interpreting Regression
Fun With Linearity
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We Secretly Already Covered This!
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Review of the Gerber, Green and Larimer Result

Our estimand is the difference in population means: θ = µy − µx .
Where µy is those receiving the social pressure mailer and µx is those
receiving the civic duty mailer.

We used difference in means to get an estimate of 0.063

We estimated the estimator’s standard error ŜE(θ̂) = 0.02.

What if there was no difference in means in the population
(µy − µx = 0)?

By asymptotic Normality (θ̂ − 0)/SE(θ̂) ∼ N(0, 1)

This implies that θ̂ ∼ N (0,SE(θ̂))
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We Secretly Already Covered This!

Example from Gerber, Green and Larimer (2008).
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Overall Idea

sampling.dist
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We assumed we knew the difference in means was zero.

We derived the sampling distribution under that value.

We asked ‘if the population difference was zero, how likely would it be
to see an observe difference as extreme (or more extreme) than our
observed estimate?’

Our observed difference was so implausible we concluded it was
unlikely the population difference was really zero.
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What is a Hypothesis Test?

A hypothesis test is a way of assessing evidence against a particular
hypothesis about the world—it is a statistical thought experiment.

By using probability, we define what the data would look like under a
given state of the world, and then assess whether or not that’s
consistent with our observed data.

Hypothesis testing is an alternative way to think about inference than
confidence intervals, but using much of the same infrastructure.

Hypothesis tests lead to discrete decisions.
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An Example from Drug Testing

Statistics play an important role in determining which drugs are approved
for sale by the FDA.

There are typically three phases of clinical trials before a drug is approved:

Phase I: Toxicity (Will it kill you?)

Phase II: Efficacy (Is there any evidence that it helps?)

Phase III: Effectiveness (Is it better than existing treatments?)

Phase I trials are conducted on a small number of healthy volunteers,
Phase II trial are either randomized experiments or within-patient
comparisons, and Phase III trials are almost always randomized
experiments with control groups.
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Example

Consider a Phase II efficacy trial reported in Sowers et al. (2006), for a
drug combination designed to treat high blood pressure in patients with
metabolic syndrome.

The trial included 345 patients with initial systolic blood pressure
between 140-159.

Each subject was assigned to take the drug combination for 16 weeks.

Systolic blood pressure was measured on each subject before and
after the treatment period.
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Example

Subject SBPbefore SBPafter Decrease

1

147 135 12

2

153 122 31

3

142 119 23

4

141 134 7

...

...
...

...

345

155 115 40
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Example

The drug was administered to 345 patients.

On average, blood pressure was 21 points lower after treatment.

The standard deviation of changes in blood pressure was 14.3.

Question: Should the FDA allow the drug to proceed to the next stage of
testing?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 12 / 148



Example

The drug was administered to 345 patients.

On average, blood pressure was 21 points lower after treatment.

The standard deviation of changes in blood pressure was 14.3.

Question: Should the FDA allow the drug to proceed to the next stage of
testing?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 12 / 148



Example

The drug was administered to 345 patients.

On average, blood pressure was 21 points lower after treatment.

The standard deviation of changes in blood pressure was 14.3.

Question: Should the FDA allow the drug to proceed to the next stage of
testing?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 12 / 148



Example

The drug was administered to 345 patients.

On average, blood pressure was 21 points lower after treatment.

The standard deviation of changes in blood pressure was 14.3.

Question: Should the FDA allow the drug to proceed to the next stage of
testing?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 12 / 148



Example

The drug was administered to 345 patients.

On average, blood pressure was 21 points lower after treatment.

The standard deviation of changes in blood pressure was 14.3.

Question: Should the FDA allow the drug to proceed to the next stage of
testing?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 12 / 148



The FDA’s Decision

We can think of the FDA’s problem in terms of two dimensions:

The true state of the world

The decision made by the FDA

Drug works Drug doesn’t work

FDA approves

Good! Bad!

FDA doesn’t approve

Bad! Good!

Two kinds of bad decisions:

False positive

False negative
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Elements of a Hypothesis Test

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Type I and Type II Errors (two types of errors)

Test Statistic (what we will observe from the sample)

Test Level (the probability of a type I error)

Rejection Region (the basis of our decision)
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Hypotheses

Null Hypothesis (H0): The conservatively assumed state of the world
we are accumulating evidence against (often “no effect”).

Example: There is not a difference in voting rates between those who
received the social pressure mailer and those that received the civic
duty mailer.

Alternative Hypothesis (Ha): The state of the world where the null
hypothesis is not true and thus the claim to be indirectly tested.

Example: There is a difference in voting rates between those who
received the social pressure mailer and those that received the civic
duty mailer.
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Error Types

(H0 False) (H0 True)

Reject H0

Correct Type I error

Don’t Reject H0

Type II error Correct

We generally make the normative judgment that we prefer an undetected
finding (Type II error) to a false discovery (Type I error).
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A Visual Reminder from Allison Horst

Artwork by @allison horst
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Test Statistics and Null Distributions

Test Statistic: which we denote Tn is a function of the sample, the
estimator and the null hypothesis.

Tn =
θ̂ − θ0

ŜE[θ̂]

This is a random variable because it is a function of the sample.

Null Distribution: the sampling distribution of the statistic/test statistic
assuming that the null is true.
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Test Statistics and Null Distribution

Returning to the voting experiment. We know from the Central Limit
Theorem that the standardized difference in means has a standard normal
distribution asymptotically,

Tn =
θ̂ − (µy − µx)

ŜE[θ̂]

d→ N (0, 1)

Under the null hypothesis of µy − µx = 0, we have

Tn =
θ̂

ŜE[θ̂]

d→ N (0, 1)

If Tn is very far from zero—in the sense that it has low probability under
N (0, 1)—then we reject the null hypothesis as not plausible.
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Rejection Region

The rejection region R contains the values of the test statistics, Tn

for which we reject the null. This is defined by the null distribution
and our chosen tolerance for Type I error.

Denote the probability of Type I error as α.

If we have a two-sided test (i.e. our null hypothesis equals a given
value and thus extreme values on either side could reject the null), we
reject when |Tn| > c where PH0(|Tn| > c) = α.

We call c the critical value.

Much like the 95% confidence interval, we pick α = .05 by
convention.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 21 / 148



Rejection Region

The rejection region R contains the values of the test statistics, Tn

for which we reject the null. This is defined by the null distribution
and our chosen tolerance for Type I error.

Denote the probability of Type I error as α.

If we have a two-sided test (i.e. our null hypothesis equals a given
value and thus extreme values on either side could reject the null), we
reject when |Tn| > c where PH0(|Tn| > c) = α.

We call c the critical value.

Much like the 95% confidence interval, we pick α = .05 by
convention.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 21 / 148



Rejection Region

The rejection region R contains the values of the test statistics, Tn

for which we reject the null. This is defined by the null distribution
and our chosen tolerance for Type I error.

Denote the probability of Type I error as α.

If we have a two-sided test (i.e. our null hypothesis equals a given
value and thus extreme values on either side could reject the null), we
reject when |Tn| > c where PH0(|Tn| > c) = α.

We call c the critical value.

Much like the 95% confidence interval, we pick α = .05 by
convention.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 21 / 148



Rejection Region

The rejection region R contains the values of the test statistics, Tn

for which we reject the null. This is defined by the null distribution
and our chosen tolerance for Type I error.

Denote the probability of Type I error as α.

If we have a two-sided test (i.e. our null hypothesis equals a given
value and thus extreme values on either side could reject the null), we
reject when |Tn| > c where PH0(|Tn| > c) = α.

We call c the critical value.

Much like the 95% confidence interval, we pick α = .05 by
convention.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 21 / 148



Rejection Region

The rejection region R contains the values of the test statistics, Tn

for which we reject the null. This is defined by the null distribution
and our chosen tolerance for Type I error.

Denote the probability of Type I error as α.

If we have a two-sided test (i.e. our null hypothesis equals a given
value and thus extreme values on either side could reject the null), we
reject when |Tn| > c where PH0(|Tn| > c) = α.

We call c the critical value.

Much like the 95% confidence interval, we pick α = .05 by
convention.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 21 / 148



Rejection Region

The rejection region R contains the values of the test statistics, Tn

for which we reject the null. This is defined by the null distribution
and our chosen tolerance for Type I error.

Denote the probability of Type I error as α.

If we have a two-sided test (i.e. our null hypothesis equals a given
value and thus extreme values on either side could reject the null), we
reject when |Tn| > c where PH0(|Tn| > c) = α.

We call c the critical value.

Much like the 95% confidence interval, we pick α = .05 by
convention.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 21 / 148



The value for which P=0.05, or 1 in 20, is 1.96 or nearly 2; it
is convenient to take this point as a limit in judging whether a
deviation ought to be considered significant or not. Deviations
exceeding twice the standard deviation are thus formally regarded
as significant. Using this criterion we should be led to follow up
a false indication only once in 22 trials, even if the statistics were
the only guide available. Small effects will still escape notice if
the data are insufficiently numerous to bring them out, but no
lowering of the standard of significance would meet this difficulty.

- Ronald Fisher, Design of Experiments (1922)
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Two-sided Rejection Region

Rejection region with α = .05, H0 : θ = 0, HA : θ 6= 0:
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Defining the Rejection Region

−4 −2 0 2 4
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T
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Reject RejectFail to Reject

2.5% 2.5%

We define the rejection region such that |Tn| > c where
PH0(|Tn| > c) = α.

This means that we will get a false rejection only 5% of the time.

We want to find the point c such that
PH0(Tn < c) + PH0(Tn > c) = α where we typically use equal
probability on each side by convention.

This is just the task of finding the quantile for α/2. In the case of
α = .05, qnorm(.05/2) = 1.96
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The Complete Recipe

1 Define a null hypothesis and the alternative hypothesis.

2 Choose a test statistic Tn.

3 Determine the Type I error you will tolerate (α).

4 Determine your critical value and thus your rejection region.

5 Calculate your test statistic in your observed data.

6 If your observed data is sufficiently unlikely under your null
hypothesis, reject your null.
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The Gerber, Green and Larimer Example

diff <- mean(treated) - mean(control)

se_diff <- sqrt(var(treated)/length(treated) +

var(control)/length(control))

test_statistic <- diff/se_diff

This yields 18.3 which is much better than our .05 critical value of 1.96.

We reject the null.
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Back to the FDA

Let’s go back to the FDA making a decision about drugs.

Drug works Drug doesn’t work

FDA approves Good! Bad!

FDA doesn’t approve Bad! Good!

Drug trials are expensive and ex ante we can specify that we only care
about one direction in particular. Consider the Sowers et al (2006) case
which claimed to decrease blood pressure.
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Sowers et al. Example

We can define our hypotheses for a one-sided test.

H0 :µdecrease ≤ 0 (1)

Ha :µdecrease > 0 (2)

We can calculate the test statistic:

x = 21.0

σ̂ = 14.3

n = 345

Therefore,

tn =
21.0− 0

14.3√
345

= 27.3

We construct our rejection region with c = qnorm(.95) = 1.644.
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Rejection Region with α = .05
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Rejection Region with α = .05
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t-test

This strategy works for any asymptotically normal estimator.

A size-α t-test (also called a Wald test) rejects H0 when |Tn| > c
where

Tn =
θ̂ − θ0

ŜE[θ̂]

We get the critical value c by using the standard normal to get the
probability such that PH0(Tn ≤c) = 1− α/2

This will guarantee the nominal probability of Type I error as n gets
large.
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Connections to Confidence Intervals

You may have noticed that there is a 1:1 mapping between CIs and
hypothesis tests (same math, different story).

If the confidence interval includes the null hypothesis, fail to reject
your null.

If the confidence interval does not include the null hypothesis, reject
your null.

A 100(1− α)% confidence interval represents all null hypotheses that we
would not reject with a α level test.

We can think of confidence intervals as a range of plausible values in the
sense that we would not have rejected them had they been our null
hypotheses.
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We can think of confidence intervals as a range of plausible values in the
sense that we would not have rejected them had they been our null
hypotheses.
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Power

We designed our tests to minimize Type I error (the false positive).
However we might also worry we are failing to detect important findings.

Experiments and surveys are expensive and so we want to design our work
to minimize the chance that we fail to reject the null at the end of the day.

Definition (Power)

The power of a test is the probability that a tests rejects the null given
some assumed population distribution Pθ(|Tn| > c).

Power = 1− P(Type II error)

If we fail to reject the null hypothesis, there are basically three possible
states of the world:

1 Null is true (no difference between the mailer populations).
2 Null is false (there is a difference between the mailer populations),

but test had low power.
3 Null is false, the test is well-powered and we got incredibly unlucky.
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Power is Important

Imagine that you are studying whether there are differences in college
admissions by race.

You take a sample of 20 applications and conduct a hypothesis test of
the difference in admissions rates.

You fail to reject the null. Is this good evidence that there are no
differences?

No! You haven’t been able to confidently reject the possibility that
there is no difference, but that’s different than rejecting the possibility
that there is a difference.

This might seem obvious but conflating a lack of evidence with
evidence for a zero effect is a problem that crops up in a lot of work.

Power analysis is a way of guiding the choice of sample size prior to
an experiment to avoid this kind of mistake.
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Steps for Power Analysis

1) Specify the null hypothesis to be tested at significance level α

2) Choose a true value for population parameters and derive the
sampling distribution of test statistic

3) Calculate the probability of rejecting the null hypothesis under this
sampling distribution.

4) Find the smallest sample size such that this rejection probability
equals a pre-specified power level.

5) Possibly repeat under different assumptions about the population.
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Example: Power Analysis

Why did they use 38 thousand people per group? Power analysis!

If their results were exactly true, would we be expect to be able to
confirm that the effect is non-zero with a replication using only 500
mailers?

For this example, let’s ignore the household sampling, but see the
challenge problem from Course Meeting 3.
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What Do We Know?

µy = .378

σ2
y = (.378)(1− .378) = 0.235

µx = .315

σ2
x = (.315)(1− .315) = 0.216

θ = µy − µx = .063

θ0 = 0

V [θ̂n] = .235/250 + 0.216/250 = .001804

θ̂n
d→ N (0.63, 0.001804)
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Calculating Probability of Rejecting the Null

We reject when

|T | =
|θ̂n − 0|
ŜE[θ̂n]

> 1.96

Rearranging we get rejection when

|θ̂n| > 1.96ŜE[θ̂n]

Under our assumption of the truth we know V [θ̂n] = .001804 and
thus: {

θ̂n < −1.96
√
.001804

}
∪
{
θ̂n > 1.96

√
.001804

}
Using the sampling distribution we derived can calculate:

P
(
θ̂n < −1.96

√
.001804

)
+ P

(
θ̂n > 1.96

√
.001804

)
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Getting an Answer in R

Let’s calculate this using the fact that θ̂n
d→ N (0.63, 0.001804)

se <- sqrt(.001804)

pnorm(-1.96*se, mean=.05, sd=se) +

pnorm(1.96*se, mean=.05, sd=se, lower.tail=FALSE)

We get 0.2177 which tells us that if the true population means were those
calculated in the experiment, we would be able to reject the null of no
effect about 22% of the time using 500 mailers.

Yikes! That is not well powered.
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Wait! Does that mean I need to know the truth before I
start to do power analysis?

Yeah. . . kind of. In practice, this is why we calculate under
many possible configurations.
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Power Curve

You can graph power for various possible effect sizes (here for 500, 1000,
and 10000 samples).
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Power calculations

Power calculations depend on your assumed difference and the
population variance, neither of which is typically known.

Instead you may want to power depending on the minimal difference
of interest with a conservative (high) estimate of population variance.

In general power is favorable when:
I large n
I bigger difference (pushes the alternative distribution away)
I smaller variance (it squeezes the distribution in)

Power analysis is really important if you are planning experiments, but
we will touch on it only cursorily in this class. The Gerber and Green
Field Experiments book is an amazing resource for more on
experiments in general.
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We Covered

Hypothesis testing provides a principled framework for making
decisions between alternatives.

The level of a test determines how often the researcher is willing to
reject a correct null hypothesis.

There is a close relationship between the results of an α level
hypothesis test and the coverage of a (1− α)% confidence interval.

Power analysis is a way to assess your probability of missing a finding
of interest.

We will cover more on subtleties of interpretation in future videos.

Next time: p-values!
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Where We’ve Been and Where We’re Going...

Last Week
I inference and estimator properties
I point estimates, confidence intervals

This Week
I hypothesis testing
I what is regression?
I nonparametric and linear regression

Next Week
I inference for simple regression
I properties of ordinary least squares

Long Run
I probability → inference → regression → causal inference
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1 Hypothesis Testing
Terminology and Procedure
One-Sided Tests
Connections
Power

2 p-values
Mechanics
Multiple Testing
Fun With Salmon
The Significance of Significance

3 What is Regression?
Conditional Expectation Functions
Nonparametric Regression
Best Linear Predictor
Ordinary Least Squares

4 Interpreting Regression
Fun With Linearity
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p-values

The appropriate level (α) for a hypothesis test depends on the relative
costs of Type I and Type II errors.

What if there is disagreement about these costs?

We might like a quantity that summarizes the strength of evidence against
the null hypothesis without making a yes or no decision.

Definition (p-value)

The p-value is the smallest value α such that an α-level test would reject
the null hypothesis.

Under the null hypothesis, this corresponds to the probability of observing
a test statistic as extreme or more extreme than the one in the observed
data (where extreme is defined in terms of the alternative hypothesis).
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p-values

The p-value depends on both the realized value of the test statistic and
the alternative hypothesis.

H0 : θ ≤ 0
Ha : θ > 0
p = 0.036

H0 : θ = 0
Ha : θ 6= 0
p = .072

H0 : θ ≥ 0
Ha : θ < 0
p = 0.964
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Rejection Regions and p-values

Recall for the social pressure experiment we got a test statistics of
tobs = 18.5.

How likely was it we would get a test statistics this extreme or more
extreme under our null hypothesis?

P0(|Tn| > 18.5) = P0(Tn > 18.5) + P0(Tn < −18.5)

= 2P0(Tn < −18.5)

We can get this in R with 2 ∗ pnorm(−18.5)

That yields a p-value of 2.06× 10−76.

By convention we would say it is statistically significant at level α for
some α that the p-value is below.
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The Sowers et. al. Example
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All those guarantees on Type I error?

It only works for one test.
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Star Chasing (aka there is an XKCD for everything)
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Multiple Testing

If we test all of the coefficients separately with a t-test, then we
should expect that 5% of them will be significant just due to random
chance.

Illustration: randomly draw 21 variables, and run a regression of the
first variable on the rest.

By design, no effect of any variable on any other, but when we run
the regression:
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Multiple Test Example

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0280393 0.1138198 -0.246 0.80605

## X2 -0.1503904 0.1121808 -1.341 0.18389

## X3 0.0791578 0.0950278 0.833 0.40736

## X4 -0.0717419 0.1045788 -0.686 0.49472

## X5 0.1720783 0.1140017 1.509 0.13518

## X6 0.0808522 0.1083414 0.746 0.45772

## X7 0.1029129 0.1141562 0.902 0.37006

## X8 -0.3210531 0.1206727 -2.661 0.00945 **

## X9 -0.0531223 0.1079834 -0.492 0.62412

## X10 0.1801045 0.1264427 1.424 0.15827

## X11 0.1663864 0.1109471 1.500 0.13768

## X12 0.0080111 0.1037663 0.077 0.93866

## X13 0.0002117 0.1037845 0.002 0.99838

## X14 -0.0659690 0.1122145 -0.588 0.55829

## X15 -0.1296539 0.1115753 -1.162 0.24872

## X16 -0.0544456 0.1251395 -0.435 0.66469

## X17 0.0043351 0.1120122 0.039 0.96923

## X18 -0.0807963 0.1098525 -0.735 0.46421

## X19 -0.0858057 0.1185529 -0.724 0.47134

## X20 -0.1860057 0.1045602 -1.779 0.07910 .

## X21 0.0021111 0.1081179 0.020 0.98447

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9992 on 79 degrees of freedom

## Multiple R-squared: 0.2009, Adjusted R-squared: -0.00142

## F-statistic: 0.993 on 20 and 79 DF, p-value: 0.4797
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Multiple Testing Gives False Positives

Notice that out of 20 variables, one of the variables is significant at
the 0.05 level (in fact, at the 0.01 level).

But this is exactly what we expect: 1/20 = 0.05 of the tests are false
positives at the 0.05 level

Also note that 2/20 = 0.1 are significant at the 0.1 level. Totally
expected!

The procedure by which tests/analyses are performed and shown to
us matters a lot!
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Problem of Multiple Testing

The multiple testing (or “multiple comparison”) problem occurs when
one considers a set of statistical tests simultaneously.

Consider k = 1, ...,m independent hypothesis tests (e.g. control
versus various treatment groups). Even if each test is carried out at a
low significance level (e.g., α = 0.05) the overall type I error rate
grows very fast: αoverall = 1− (1− αk)m.

That’s right - it grows exponentially. E.g., given test 7 tests at
α = .1 level the overall type I error is .52.

Even if all null hypotheses are true we will reject at least one of them
with probability .52.

Same for confidence intervals: probability that all 7 CI cover the true
values simultaneously over repeated samples is .52.
So for each coefficient you have a .90 confidence interval, but overall
a .52 percent confidence interval.
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This all seems rather bad. Fixing this is an active research
area for a lot of people.

Two Styles of Solutions:
(1) statistical

and
(2) procedural.
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Statistical Paths Forward

Control the Family-wise Error Rate:

P(making at least one Type I error)

I Bonferroni correction: reject the jth null hypothesis Hj if pj < α/m
where m is the total number of tests

F NB: VERY conservative

Control the False Discovery Rate

E
[ # of false rejections

max(total # of rejections, 1)

]
I Benjamini-Hochberg Procedure: Order the p-values

p(1) ≤ p(2) ≤ · · · ≤ p(m)

F Find the largest k such that p(i) ≤ α∗k
m

and call it k∗

F Reject all Hk for k ≤ k∗
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Benjamini-Hochberg Example

Pvalues: 0.011, 0.13, 0.06, 0.54, 0.008, 0.024, 0.001, 0.201, 0.78, 0.023

Step 1:
Sort

Step 2:
Find New Threshold

Step 3:
Find k

Step 4:
Reject

0.001

0.008

0.011

0.023

0.024

0.06

0.13

0.201

0.54

0.78
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0.05*1/10 = 0.005

0.05*2/10 = 0.01

0.05*3/10 = 0.015

0.05*4/10 = 0.02

0.05*5/10 = 0.025

0.05*6/10 = 0.03

0.05*7/10 = 0.035

0.05*8/10 = 0.04

0.05*9/10 = 0.045

0.05*10/10 = 0.05
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Procedural Paths Forward

Preregistration
I in theory, forces people to pre-commit to analyses.
I doesn’t directly address multiple comparisons, but may credibly limit

them.
I doesn’t work if pre-analysis plans aren’t abided by or if people register

many, many hypotheses.

Sample Splits
I Set-aside one sample for discovery where you can search over lots of

different options.
I A second sample can be used to test a small set of hypotheses.
I Similar to preregistration in that it doesn’t directly address multiple

comparisons, but limits them.
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Fun With Salmon

Bennett, Baird, Miller and Wolford. (2009). “Neural correlates of
interspecies perspective taking in the post-mortem Atlantic Salmon: an
argument for multiple comparisons correction.”
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Methods

(a.k.a. the greatest methods section of all time)

Subject
“One mature Atlantic Salmon (Salmo salar) participated in the fMRI
study. The salmon was approximately 18 inches long, weighed 3.8 lbs,
and was not alive at the time of scanning.”

Task
“The task administered to the salmon involved completing an
open-ended mentalizing task. The salmon was shown a series of
photographs depicting human individuals in social situations with a
specified emotional valence. The salmon was asked to determine what
emotion the individual in the photo must have been experiencing.”

Design
“Stimuli were presented in a block design with each photo presented
for 10 seconds followed by 12 seconds of rest.A total of 15 photos
were displayed. Total scan time was 5.5 minutes.”
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Results

“Several active voxels were discovered in a cluster located within the
salmon’s brain cavity. The size of this cluster was 81 mm3 with a
cluster-level significance of p = .001.”
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Okay, but what do they mean?
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The Meaning of p-values (courtesy of XKCD)
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The value of the p-value

Every experiment may be said to exist only in order to give the
facts a chance of disproving the null hypothesis.

Ronald Fisher (1935)

In social science (and I think in psychology as well), the null
hypothesis is almost certainly false, false, false, and you don’t
need a p-value to tell you this. The p-value tells you the extent
to which a certain aspect of your data are consistent with the
null hypothesis. A lack of rejection doesn’t tell you that the
null hypothesis is likely true; rather, it tells you that you don’t
have enough data to reject the null hypothesis.

Andrew Gelman (2010)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 67 / 148



The value of the p-value

Every experiment may be said to exist only in order to give the
facts a chance of disproving the null hypothesis.

Ronald Fisher (1935)

In social science (and I think in psychology as well), the null
hypothesis is almost certainly false, false, false, and you don’t
need a p-value to tell you this. The p-value tells you the extent
to which a certain aspect of your data are consistent with the
null hypothesis. A lack of rejection doesn’t tell you that the
null hypothesis is likely true; rather, it tells you that you don’t
have enough data to reject the null hypothesis.

Andrew Gelman (2010)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 67 / 148



Practical versus Statistical Significance

Tn =
θ̂ − θ0

ŜE[θ̂]
=

X̄ − µ0√
V [X ]/n

What are the possible reasons for rejecting the null?

1 X − µ0 is large (big difference between sample mean and mean
assumed by H0)

2 n is large (you have a lot of data so you have a lot of precision)

3 V [X ] is small (the outcome has low variability)

We need to be careful to distinguish:
I practical significance (e.g. a big effect)

I statistical significance (i.e. we reject the null)

In large samples even tiny effects will be significant, but the results
may not be very important substantively. Always discuss both!
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ŜE[θ̂]
=

X̄ − µ0√
V [X ]/n

What are the possible reasons for rejecting the null?

1 X − µ0 is large (big difference between sample mean and mean
assumed by H0)

2 n is large (you have a lot of data so you have a lot of precision)

3 V [X ] is small (the outcome has low variability)

We need to be careful to distinguish:
I practical significance (e.g. a big effect)

I statistical significance (i.e. we reject the null)

In large samples even tiny effects will be significant, but the results
may not be very important substantively. Always discuss both!

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 68 / 148



Practical versus Statistical Significance

Tn =
θ̂ − θ0

ŜE[θ̂]
=

X̄ − µ0√
V [X ]/n

What are the possible reasons for rejecting the null?

1 X − µ0 is large (big difference between sample mean and mean
assumed by H0)

2 n is large (you have a lot of data so you have a lot of precision)

3 V [X ] is small (the outcome has low variability)

We need to be careful to distinguish:
I practical significance (e.g. a big effect)

I statistical significance (i.e. we reject the null)

In large samples even tiny effects will be significant, but the results
may not be very important substantively. Always discuss both!

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 68 / 148



Practical versus Statistical Significance

Tn =
θ̂ − θ0
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Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:

I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.

I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.

I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.

I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.

I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values do not:
I measure the size or importance of a result.
I measure the probability that the alternative hypothesis is false.
I measure the probability that the null hypothesis is true.
I indicate how predictive a variable is of another.
I provide a good indication of whether a paper should be published.

a large p-value could mean either that we are in the null world OR
that we had insufficient power.

See also: The ASA’s (American Statistical Association) Statement on p-Values:
Context, Process, and Purpose
(http://dx.doi.org/10.1080/00031305.2016.1154108)

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 69 / 148

http://dx.doi.org/10.1080/00031305.2016.1154108


Arbitrary Publication Cutoffs

Gerber and Malhotra (2006) Top Political Science Journals
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Arbitrary Publication Cutoffs

Gerber and Malhotra (2008) Top Sociology Journals
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Arbitrary Publication Cutoffs

Masicampo and Lalande (2012) Top Psychology Journals
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Still Not Convinced?
The Real Harm of Misinterpreted p-values
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Example from Hauer: Right-Turn-On-Red
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The Point in Hauer

Two other interesting examples in Hauer (2004)

Core issue is that lack of significance is not an indication of a zero
effect, it could also be a lack of power (i.e. a small sample size
relative to the difficulty of detecting the effect)

On the opposite end, large tech companies rarely use significance
testing because they have huge samples which essentially always find
some non-zero effect. But that doesn’t make the finding significant in
a colloquial sense of important.
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What if I need to show evidence of a zero effect?
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Equivalence Tests

Solution: Flip the hypotheses:

H0 : θT − θC ≤ εL or θT − θC ≥ εU
versus

HA : εL < θT − θC < εU
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Tests of Difference vs. Equivalence Tests

H0 : µT−µCσ = 0 versus HA : µT−µCσ 6= 0

Type I Error

Test has α probability of
declaring the two means
different when they are, in
fact, the same.

Problem: Controlling for the
incorrect type of error if we’re
trying to provide evidence in
favor of equivalence.

Difference in Means Test

diff

Fail to
Reject H0

of no difference

Reject H0
of no difference

Reject H0
of no difference

α 2α 2
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Tests of Difference vs. Equivalence Tests

H0 : µT−µC

σ ≥ εU or µT−µC

σ ≤ εL versus HA : εL <
µT−µC

σ < εU

Type I Error

Test has α probability of
declaring the two means
equivalent when they are, in
fact, the different.

Solution: Now control for the
correct type of false positive.

Equivalence Test

diff

Reject H0
of a

difference

Fail to
Reject H0

of a difference

Fail to
Reject H0

of a difference

α
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p-values

General Message:
Don’t misinterpret, or rely too heavily, on your p-values.
They are evidence against your null, not evidence in favor

of your alternative.
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But Let’s Not Obsess Too Much About p-values

From Leek and Peng (2015) “P values are just the tip of the iceberg” Nature.
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We Covered

p-values

multiple testing

the problems with p-values

Next Time: What is Regression?

Bonus reading for those interested to learn more:
Hauer. 2004 “The harm done by tests of significance.” Accident Analysis & Prevention.

Gigerenzer. 2004. “Mindless statistics.” Journal of Socio-Economics.

Nuzzo. 2014. “Statistical Errors.” Nature

Ward et al. 2010. “The perils of policy by p-value: Predicting civil conflicts.” Journal of
Peace Research

Cohen. 1994. “The Earth is Round (p < 0.05).” American Psychologist

Schwab. 2011. “Researchers should make thoughtful assessments instead of
null-hypothesis significance tests.” Organizational Science.
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Ward et al. 2010. “The perils of policy by p-value: Predicting civil conflicts.” Journal of
Peace Research

Cohen. 1994. “The Earth is Round (p < 0.05).” American Psychologist

Schwab. 2011. “Researchers should make thoughtful assessments instead of
null-hypothesis significance tests.” Organizational Science.
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Where We’ve Been and Where We’re Going...

Last Week
I inference and estimator properties
I point estimates, confidence intervals

This Week
I hypothesis testing
I what is regression?
I nonparametric and linear regression

Next Week
I inference for simple regression
I properties of ordinary least squares

Long Run
I probability → inference → regression → causal inference
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1 Hypothesis Testing
Terminology and Procedure
One-Sided Tests
Connections
Power

2 p-values
Mechanics
Multiple Testing
Fun With Salmon
The Significance of Significance

3 What is Regression?
Conditional Expectation Functions
Nonparametric Regression
Best Linear Predictor
Ordinary Least Squares

4 Interpreting Regression
Fun With Linearity
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What You’ve Probably Seen This
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Regression Line: intensity = −3.2 + inequality 5.1

We are going to go about this a slightly different way.
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What is a relationship and why do we care?

Most of what we want to do in the social science is learn about how
two variables are related.

I Does turnout vary by types of mailers received?
I Does a the probability of getting a job vary by applicant race?
I Is intergenerational mobility less likely for children with an incarcerated

parent?

By convention variables tend to be called X and Y .

Y - the dependent variable or outcome or regressand or left-hand-side
variable or response

I Voter turnout
I Receiving a job
I Income relative to parent

X - the independent variable or explanatory variable or regressor or
right-hand-side variable or treatment or predictor

I Social pressure mailer versus Civic Duty Mailer
I Applicant race
I Incarcerated parent
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Characterizing the Joint Distribution

A first step in this process is to characterize the joint distribution
between the two random variables, fX ,Y , based on pairs of draws for
the same unit (Xi ,Yi ).

Generally we are trying to characterize some properties of the
conditional distribution fY |X and often we will use the conditional
expectation function, µ(x) = E [Y |X = x ], as a summary.

We can use the conditional expectation function to help us perform
important social science tasks:

I Description: what is average value of Y among people with X = x in
the population.

I Prediction: for a random sample of the population and given a value of
x , µ(x) is the best predictor in terms of squared error.

I Causal Inference: with additional assumptions (later in the semester)
we can talk about how intervening to change the value of X will
change Y .
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Reminder of Definitions

Definition (Conditional Expectation (Discrete))

Let Y and X be discrete random variables. The conditional expectation of
Y given X = x is defined as:

E [Y |X = x ] =
∑
y

y P(Y = y |X = x) =
∑
y

y pY |X (y |x)

Definition (Conditional Expectation (Continuous))

Let Y and X be continuous random variables. The conditional expectation
of Y given X = x is given by:

E [Y |X = x ] =

∫ ∞
−∞

y fY |X (y |x)dy
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Implications of the CEF Definition

Let X and Y be random variables and decompose Yi into the conditional
expectation function plus error such that,

Yi = E [Yi |Xi ] + εi

Then, the expectation of the error doesn’t depend on Xi

E [εi |Xi ] = E [εi ] = 0

the error is uncorrelated with any function of Xi

Cov [g(Xi ), εi ] = 0

the variance of the outcome given X is the variance of the error given
X .

V [εi |Xi ] = V [Yi |Xi ]

and the CEF is the lowest mean squared error predictor of Yi given Xi
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CEF for binary covariates

We’ve been writing µ1 and µ0 for the means in different groups.

For example, on the problem set, we looked at the expected value of
the loan amount given income group.

Note that these are just conditional expectations. Define Y to be the
loan amount, X = 1 to indicate the high income group and X = 0 to
indicate the low income group:

µ1 = E [Y |X = 1]

µ0 = E [Y |X = 0]

Notice here that since X can only take on two values, 0 and 1, then
these two conditional means completely summarize the CEF.

Estimation just involves taking the means within the groups.
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Non-binary CEFs

If X is discrete with not too many categories, we can estimate the
conditional expectation using the means within groups:

I µ̂(1) = Ê [Y |X = 1] = 1
nx=1

∑
i :Xi=1 Yi

I µ̂(2) = Ê [Y |X = 2] = 1
nx=2

∑
i :Xi=2 Yi

I . . .

This kind of estimation is nonparametric in the sense that it makes no
assumptions about the specific functional form of µ(x).

When X can take on many possible values (think income) or we have
few observation for a given value of X , we have to write out a more
general function.

These functional forms are unknown which makes life hard.
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Nonparametric Regression with Discrete X

Let’s take a look at some data on education and income from the
American National Election Study

We use two variables:
I Y : income

I X : educational attainment

Goal is to characterize the conditional expectation E [Y |X = x ], i.e.
how average income varies with education level
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Nonparametric Regression with Discrete X

educ: Respondent’s education:

1. 8 grades or less and no diploma or

2. 9-11 grades

3. High school diploma or equivalency test

4. More than 12 years of schooling, no higher degree

5. Junior or community college level degree (AA degrees)

6. BA level degrees; 17+ years, no postgraduate degree

7. Advanced degree
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Nonparametric Regression with Discrete X

income: Respondent’s family income:

1. None or less than $2,999

2. $3,000-$4,999

3. $5,000-$6,999

4. $7,000-$8,999

5. $9,000-$9,999

6. $10,000-$10,999
...

17. $35,000-$39,999

18. $40,000-$44,999
...

23. $90,000-$104,999

24. $105,000 and over
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Marginal Distribution of Y (income)
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Joint Distribution of X and Y (Income and Education)

● ● ●● ●●●●●●● ●● ●● ●● ●●

●● ●● ●● ● ● ●●●●

● ●● ●●● ● ● ●● ● ●● ● ●●●

● ●●●● ● ●●●● ●● ●●●●● ● ●

●● ● ●●● ●●●●● ● ●● ●● ● ●

● ●● ●● ● ●●● ●●●●

●● ●●●● ●● ● ●●

● ●●● ●● ● ●●● ●● ● ● ● ●●

●●● ● ●●● ●●●

●● ● ●● ●● ●● ●● ●●● ●

●●● ●●●● ●● ●● ●●●●● ●●● ● ●● ●

● ●● ● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ● ●● ●● ● ●●●● ●●

●●● ●●● ●● ●●●●●● ●●●●● ●●● ●●● ●

●●● ●●●● ● ● ●● ●●● ● ●● ●●● ●● ●● ● ●●● ●● ●● ●●● ●●● ●

●●● ●●● ● ● ●● ●●●● ●● ●● ●● ● ●●●●● ● ●● ●● ●●● ●●● ● ●●● ●● ● ●●● ● ● ●● ●●●●● ● ●●● ●●● ●● ●●●

●● ●● ● ●● ● ●● ●●● ●●● ●● ●●● ●●●● ●●●●● ●● ● ●● ● ● ●●● ● ●● ●●● ●● ● ●●●● ●●●● ●● ●●●●● ●● ●●●●

● ●●●●● ●●● ●● ●● ●●●● ●●● ●● ●● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ● ●● ●● ●

●● ● ●● ● ● ●●●● ● ● ●● ●● ● ●●●●● ●● ●●● ●●● ●● ● ●●●●● ●● ● ●●●● ●●

●● ●●● ● ●●●●● ●● ● ●● ●● ●●● ●● ● ●●● ●●● ● ●●● ● ●●●● ●●● ●● ●● ●● ●● ●

● ●●● ●●● ●●● ●● ● ●● ●●●●● ● ● ●●● ●●●● ● ● ●● ● ●●● ●● ●● ●●● ●●●● ●●● ●● ●●●● ●●●● ●● ●● ●●●● ● ●●● ●●● ●● ●●●● ● ●●●●●● ● ●●●● ●● ●● ● ●

●●●● ●●● ●●●● ●●●● ● ●● ●● ● ●● ● ●●● ●●● ●●● ●●●● ●● ●● ●● ● ●●●● ● ●●● ● ●●● ● ●● ●●● ●●● ● ●●● ●●● ●●● ●● ● ●● ● ●●● ●●●●● ●●● ●●● ●● ●● ●●●●

● ●● ●● ● ●●●●● ●●● ●● ●●●●● ● ●● ● ●● ● ●●●●● ●●● ●●● ●● ●●●●●● ●●● ●● ●

● ●● ● ●● ●● ●● ●● ●●● ● ●●● ●●● ●●● ● ●● ● ●● ●● ●● ●● ● ●● ●●●● ●● ●

●●●● ●● ● ●● ●● ● ● ●● ●●● ●●●● ●●● ●●● ● ●●● ●●● ●●● ●●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●● ●●

1 2 3 4 5 6 7

5
10

15
20

jitter(educ)

in
co

m
e

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 96 / 148



Distribution of income given education p(y |x)
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Nonparametric Regression with Discrete X
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Nonparametric Regression

This approach works well as long as
I X is discrete
I there are a small number values of X
I a small number of X variables
I a lot of observations at each X value

But what do we do when X is continuous and has many values?

Let’s talk through a few options.
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A Binning Approach to CEF for continuous random
variables
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A Binning Approach to CEF for continuous random
variables
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A Binning Approach to CEF for continuous random
variables
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A Binning Approach to CEF for continuous random
variables
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Uniform Kernel Regression: Simple Local Averages

Dividing into discrete bins can get pretty noisy.

Another approach is to use a moving local average to estimate
E [Y |X ].

We will call this approach uniform kernel regression for a reason that
will become clear shortly.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 101 / 148



Uniform Kernel Regression: Simple Local Averages

Dividing into discrete bins can get pretty noisy.

Another approach is to use a moving local average to estimate
E [Y |X ].

We will call this approach uniform kernel regression for a reason that
will become clear shortly.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 101 / 148



Uniform Kernel Regression: Simple Local Averages

Dividing into discrete bins can get pretty noisy.

Another approach is to use a moving local average to estimate
E [Y |X ].

We will call this approach uniform kernel regression for a reason that
will become clear shortly.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 101 / 148



Uniform Kernel Regression: Simple Local Averages

Dividing into discrete bins can get pretty noisy.

Another approach is to use a moving local average to estimate
E [Y |X ].

We will call this approach uniform kernel regression for a reason that
will become clear shortly.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 101 / 148



Example of Kernel CEF Estimation
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Uniform Kernel Regression: Simple Local Averages

Calculate the average of the observed y points that have x values in
the interval [x0 − h , x0 + h]

h = some positive number (called the bandwidth)

Uniform kernel: every observation in the interval is equally weighted
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u

K
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This gives the uniform kernel regression:

Ê [Y |X = x0] =

∑N
i=1 Kh((Xi − x0)/h)Yi∑N
i=1 Kh((Xi − x0)/h)

where Kh(u) =
1

2
1{|u|≤1}
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Changing the Bandwidth
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Uniform Kernel Regression: Properties

Theorem (Consistency of the Uniform Kernel Density Estimator)

For iid continuous random variables X1,X2, . . .Xn, ∀x ∈ R,

if the kernel is uniform, and

if h→ 0 and

nh→∞ as

n→∞, then

f̂K (x)
p−→ f (x).

Aronow and Miller Theorem 3.3.8. Proof by weak law of large numbers
and the plug-in principle.
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The More General Form of the Estimator

Definition (Kernel Density Estimator)

Let X1,X2, . . .Xn be iid continuous random variables with common PDF f .

Let K : R→ R be a function which is symmetric about the y -axis
satisfying

∫∞
−∞ K (x)dx = 1, and let Kh(x) = 1

hK ( xh )∀x ∈ R and h > 0.

Then a kernel density estimator of f (x) is

f̂K (x) =
1

n

n∑
i=1

Kh(x − Xi ),∀x ∈ R

The function K is called the kernel and the scaling parameter h is called
the bandwidth.
(Aronow and Miller Definition 3.3.7)
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Kernel Estimation

We can create other estimators by filling in other kernels.

Generally the idea is to weight things further from the focal point by
less than those closer to the focal point.
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Kernel Estimation

We can create other estimators by filling in other kernels.

Generally the idea is to weight things further from the focal point by
less than those closer to the focal point.

Uniform Kernel

Calculate the average of the observed y points that have x values in
the interval [x0 − h, x0 + h]

Each observation within the interval is given equal weight, each
observation outside the interval is given 0 weight
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Uniform Kernel
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Kernel Estimation

We can create other estimators by filling in other kernels.

Generally the idea is to weight things further from the focal point by
less than those closer to the focal point.

Gaussian Kernel

Distance weighted by how far from x0 following the normal density

1√
2π

e−
1
2
x2

−2 −1 0 1 2

x

K
_h

(x
)

Gaussian Kernel
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Kernel Estimation

We can create other estimators by filling in other kernels.

Generally the idea is to weight things further from the focal point by
less than those closer to the focal point.

Triangular

Distance weighted by how far from x0 using linear distance
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K
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Triangular Kernel
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Kernel Estimation

We can create other estimators by filling in other kernels.

Generally the idea is to weight things further from the focal point by
less than those closer to the focal point.

Epanechnikov

Distance weighted by how far from x0 using a parabolic function
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Epanechnikov Kernel
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Example of Gaussian Kernel
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Example of Gaussian Kernel
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Bias-Variance Tradeoff

When choosing an estimator Ê [Y |X ] for E [Y |X ], we face a
bias-variance tradeoff

Notice that we can chose models with various levels of flexibility:
I A very flexible estimator allows the shape of the function to vary (e.g.

a kernel regression with a small bandwidth)

I A very inflexible estimator restricts the shape of the function to a
particular form
(e.g. a kernel regression with a very wide bandwidth)
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1 Hypothesis Testing
Terminology and Procedure
One-Sided Tests
Connections
Power

2 p-values
Mechanics
Multiple Testing
Fun With Salmon
The Significance of Significance

3 What is Regression?
Conditional Expectation Functions
Nonparametric Regression
Best Linear Predictor
Ordinary Least Squares

4 Interpreting Regression
Fun With Linearity
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Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

The CEF can be infinitely complex.

Estimating the CEF can, therefore, be difficult.

So, instead we can limit ourselves to classes of functions that
approximate the CEF.

I I.e. we are using a more inflexible estimator.

In particular, what if we limit ourselves to the class of linear predictors:

g(X ) = a + bX

We call this the linear regression line

What function minimizes MSE, among this class of functional forms?

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 111 / 148



Best Linear Predictor

Theorem

For a random variable X and Y , if V [X ] > 0, then the best linear
predictor (BLP) of Y given X is g(X ) = α + βX where,

α = E [Y ]− Cov [X ,Y ]

V [X ]
E [X ]

β =
Cov(X ,Y )

V (X )

Corollary

The BLP is the best linear predictor of the CEF. I.e. setting a = α
and b = β minimizes

E
[
(E [Y | X ]− (a + bX ))2

]
If the CEF is linear, the CEF is the BLP
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Linear Approximations

But what if the CEF isn’t linear?

Well it probably isn’t, but the best linear predictor is still well-defined.

It is the linear projection of Yi onto Xi .

In general, this is distinct from the CEF:
I CEF is the best predictor of Yi among all functions.
I Linear projection is the best predictor among linear functions.

The nice thing about the linear projection is that it exists and is
well-defined even if the CEF is non-linear.
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BLP Approximations Depend on the Marginal Distribution
of X

Example 2.2.24. �e BLP Under Nonlinearity

Suppose that, as in Example 2.2.23, Y = 10X 2+W ,W ⇠ N (0, 1) andX ??W . IfX is uniformly distributed
between 0 and 1, the CEF of Y given X is the same as above: E[Y |X ] = X 2. However, we see in the top
le� panel of Figure 2.2.2 that the BLP approximates the CEF reasonably well only over certain areas.
And if the distribution of X changes, the BLP changes. Figure 2.2.2 demonstrates how, with the same
(nonlinear) CEF (in black), the BLP (in red) depends on the distribution of X . 4
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Figure 2.2.2: Plo�ing the CEF and the BLP over Di�erent Distributions of X

Aronow and Miller, Chapter 2 (September 5, 2017): Page 76
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Best Linear Predictor

Warning: the BLP won’t always be a good fit for the data
(even though it really wants to be)

Figure: ‘If I fits, I sits’

The BLP is always a line regardless of the data.
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1 Hypothesis Testing
Terminology and Procedure
One-Sided Tests
Connections
Power

2 p-values
Mechanics
Multiple Testing
Fun With Salmon
The Significance of Significance

3 What is Regression?
Conditional Expectation Functions
Nonparametric Regression
Best Linear Predictor
Ordinary Least Squares

4 Interpreting Regression
Fun With Linearity
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Ordinary Least Squares

Okay, we’ve finally made it to the OLS model you’ve heard so much
about!

We’ve defined a population line of best fit β0 + β1Xi that
approximates the CEF.

We can now estimate β0 and β1 like any other population parameters
using samples from the joint distribution f(Y ,X )(y , x)

The core idea will be to use the plug-in principle. We want the line
that minimizes:

(β0, β1) = arg min
β0,β1

E [(Yi − β0 − β1Xi )
2]

So we will plug in the sample analogs to the population:

(β̂0, β̂1) = arg min
β̃0,β̃1

n∑
i=1

(Yi − β̃0 − β̃1Xi )
2

This is called the ordinary least squares (OLS) estimator.
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Plug-in Estimation of the BLP

Noting we can rewrite Cov [X ,Y ]
V [X ] = E [XY ]−E [X ]E [Y ]

E [X 2]−E [X ]2 , and using the plug-in

principle, we can estimate the parameters of the BLP as:

α̂ = Y − XY − X · Y
X 2 − X

2
X = Y − β̂X

β̂ =
XY − X · Y
X 2 − X

2
=

Ĉov(X ,Y )

V̂ (X )
=

∑n
i=1(Yi − Ȳ )(Xi − X̄ )∑n

i=1(Xi − X̄ )2

This corresponds to the linear projection which minimizes the sum of
squared errors.
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Fitted linear CEF/regression function
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Fitted values and residuals

Definition (Fitted Value)

A fitted value or predicted value is the estimated conditional mean of Yi

for a particular observation with independent variable Xi :

Ŷi = β̂0 + β̂1Xi

Definition (Residual)

The residual is the difference between the actual value of Yi and the
predicted value, Ŷi :

ûi = Yi − Ŷi = Yi − β̂0 − β̂1Xi
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Why not this line?
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Minimize the residuals

The residuals, ûi = Yi − β̂0 − β̂1Xi , tell us how well the line fits the
data.

I Larger magnitude residuals means that points are very far from the line
I Residuals close to 0 mean points very close to the line

The smaller the magnitude of the residuals, the better we are doing at
predicting Y

Choose the line that minimizes the residuals
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The residuals, ûi = Yi − β̂0 − β̂1Xi , tell us how well the line fits the
data.

I Larger magnitude residuals means that points are very far from the line
I Residuals close to 0 mean points very close to the line

The smaller the magnitude of the residuals, the better we are doing at
predicting Y

Choose the line that minimizes the residuals

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 127 / 148



Which is better at minimizing residuals?
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Linear Regression: Justification

The BLP may be a very loose approximation to E [Y |X ]

Why would we ever want to do this?

I Theoretical reason to assume linearity is close enough

I Ease of interpretation

I Bias-variance tradeoff

I Analytical derivation of sampling distributions (next few weeks)

I We can make the model more flexible, even in a linear framework (e.g.
we can add polynomials, use log transformations, etc.)

Perhaps the biggest reason is that it extends easily to the case where
X is a vector of random variables.
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We Covered

Conditional Expectation Functions

Nonparametric Regression

Best Linear Predictors

Ordinary Least Squares

Next Time: Interpreting Regression
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Where We’ve Been and Where We’re Going...

Last Week
I inference and estimator properties
I point estimates, confidence intervals

This Week
I hypothesis testing
I what is regression?
I nonparametric and linear regression

Next Week
I inference for simple regression
I properties of ordinary least squares

Long Run
I probability → inference → regression → causal inference
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1 Hypothesis Testing
Terminology and Procedure
One-Sided Tests
Connections
Power

2 p-values
Mechanics
Multiple Testing
Fun With Salmon
The Significance of Significance

3 What is Regression?
Conditional Expectation Functions
Nonparametric Regression
Best Linear Predictor
Ordinary Least Squares

4 Interpreting Regression
Fun With Linearity
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Interpretation of the regression slope

When we model the regression function as a line, we can interpret the
parameters of the line in appealing ways:

1 Intercept: the average outcome among units with X = 0 is β0:

E [Y |X = 0] ≈ β0 + β10 = β0

2 Slope: a one-unit change in X changes our prediction of Y by β1

E [Y |X = x + 1]− E [Y |X = x ] ≈ (β0 + β1(x + 1))− (β0 + β1x)

= β0+β1x + β1−β0−β1x

= β1
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Linear Regression as a Descriptive Model

A lot of social science reports regression as saying that a one unit
change in X is associated with a β unit change in Y .

This leans suggestively towards a causal interpretation that if we
intervened to change X then Y would change in some way. We will
talk more about the assumptions we would need to draw this
conclusion later in the semester.

For now, I find it helpful to think of regression descriptively as talking
about different groups of people. Our guess of the mean for units with
x = 2 is β higher than our guess of the mean for the units with x = 1.

This helps clear that it is an approximation to the CEF and that the
units being described are different.
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Linear Regression as a Predictive Model

Linear regression can also be used to predict new observations

Basic idea:
I Find estimates β̂0, β̂1 of β0, β1 based on the in-sample data
I To find the expected value of Y for an out-of-sample data drawn from

the same population we can use information about X = xnew to
calculate:

Ŷ = β̂0 + β̂1xnew

This prediction is the best in the space of lines in terms of the
squared error.

While the line is defined over all regions of the data we may be
concerned about:

I interpolation
I extrapolation
I predicting in ranges of X with sparse data
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Which Predictions Do You Trust?
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Example: Tatem, et al. Sprinters Data

In a 2004 Nature article, Tatem et al. use linear regression to conclude
that in the year 2156 the winner of the women’s Olympic 100 meter sprint
may likely have a faster time than the winner of the men’s Olympic 100
meter sprint.

How do the authors make this conclusion?

Using data from 1900 to 2004, they fit linear regression models of the
winning 100 meter time on year for both men and women. They then use
the estimates from these models to extrapolate 152 years into the future.
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Tatem et al. Extrapolation
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Tatem et al.’s predictions. Men’s times are in blue, women’s times are in red.
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Alternate Models Fit Well, Yield Different Predictions
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Alternate Models Fit Well, Yield Different Predictions
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The Trouble with Extrapolation

The model only gives the best fitting line where we have data, it says
little about the shape where there isn’t any data.

We can always ask illogical questions and the model gives answers.
I For example, when will women finish the sprint in negative time?

Fundamentally we are assuming that data outside the sample looks
like data inside the sample, and the further away it is the less likely
that is to hold.

This problem gets much harder in high dimensions
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A More Subtle Example
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Regression as a Causal Model (A Preview)

Can regression be also used for causal inference?

Answer: A very qualified yes

For example, can we say that sending that social pressure caused people to
vote?

To interpret β as a causal effect of X on Y , we need very specific and often
unrealistic assumptions:

(1) E [Y |X ] is correctly specified as a linear function (linearity)
(2) There are no other variables that affect both X and Y (exogeneity)

(1) can be relaxed by:
F Using a flexible nonlinear or nonparametric method
F “Preprocessing” data to make analysis robust to misspecification

(2) can be made plausible by:
F Including carefully-selected control variables in the model
F Choosing a clever research design to rule out confounding

We will return to this later in the course

For now, it is safest to treat β as a purely descriptive/predictive quantity
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Fun with Linearity

“The Siren’s Song of Linearity”
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Fun with Linearity

Images on following slides courtesy of Tom Griffiths
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The Design

Each learner sees a set of (x , y) pairs

Makes predictions of y for new x values

Predictions are data for the next learner

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 145 / 148



The Design

Each learner sees a set of (x , y) pairs

Makes predictions of y for new x values

Predictions are data for the next learner

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 145 / 148



The Design

Each learner sees a set of (x , y) pairs

Makes predictions of y for new x values

Predictions are data for the next learner

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 145 / 148



The Design

Each learner sees a set of (x , y) pairs

Makes predictions of y for new x values

Predictions are data for the next learner

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 145 / 148



The Design

Each learner sees a set of (x , y) pairs

Makes predictions of y for new x values

Predictions are data for the next learner

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 145 / 148



Results
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We covered

Some basic insights about how to interpret regression.

Issues of extrapolation.

We will return to this more in future weeks.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 147 / 148



We covered

Some basic insights about how to interpret regression.

Issues of extrapolation.

We will return to this more in future weeks.

Stewart (Princeton) Week 4: Testing/Regression September 21–25, 2020 147 / 148



This Week in Review

Hypothesis Testing!

P-Values!

What is Regression?

Interpreting Regression!

Going Deeper:

Aronow and Miller (2019) Foundations of Agnostic Statistics.
Cambridge University Press. Chapter 4.

Next week: Properties of Linear Regression with One Explanatory Variable.
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