Week 5: Simple Linear Regression

Brandon Stewart ${ }^{1}$

Princeton
September 28-October 2, 2020

[^0]
Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression
- goodness of fit

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression
- goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression
- goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causal inference

Macrostructure—This Semester

Macrostructure—This Semester

The next few weeks,

- Linear Regression with Two Regressors
- Break Week and Multiple Linear Regression
- Rethinking Regression

Macrostructure—This Semester

The next few weeks,

- Linear Regression with Two Regressors
- Break Week and Multiple Linear Regression
- Rethinking Regression
- Regression in the Social Sciences
- Causality with Measured Confounding
- Unmeasured Confounding and Instrumental Variables
- Repeated Observations and Panel Data

Macrostructure—This Semester

The next few weeks,

- Linear Regression with Two Regressors
- Break Week and Multiple Linear Regression
- Rethinking Regression
- Regression in the Social Sciences
- Causality with Measured Confounding
- Unmeasured Confounding and Instrumental Variables
- Repeated Observations and Panel Data
- Review and Final Discussion
(1) Mechanics of OLS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

(1) Mechanics of OLS

(2) Classical Perspective (Part 1, Unbiasedness)

- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

Narrow Goal: Understand lm() Output

Call:

```
lm(formula = sr ~ pop15, data = LifeCycleSavings)
```

Residuals:

Min	1Q Median	3Q	Max	
-8.637	-2.374	0.349	2.022	11.155

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

| (Intercept) | 17.49660 | 2.27972 | 7.675 | $6.85 \mathrm{e}-10$ |
| :--- | :--- | :--- | ---: | :--- | ***

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ ' $* *$ ' 0.01 '*' 0.05 '.' 0.1 ' ,
Residual standard error: 4.03 on 48 degrees of freedom Multiple R-squared: 0.2075,Adjusted R-squared: 0.191 F-statistic: 12.57 on 1 and 48 DF, p-value: 0.0008866

Reminder

Reminder

How do we fit the regression line $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ to the data?

Reminder

How do we fit the regression line $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ to the data?

Reminder

How do we fit the regression line $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ to the data?
Answer: We will minimize the squared sum of residuals

The Population Quantity

The Population Quantity

- Broadly speaking we are interested in the conditional expectation function (CEF) in part because it minimizes the mean squared error.

The Population Quantity

- Broadly speaking we are interested in the conditional expectation function (CEF) in part because it minimizes the mean squared error.
- The CEF has a potentially arbitrary shape but there is always a best linear predictor (BLP) or linear projection which is the line given by:

$$
\begin{aligned}
g(X) & =\beta_{0}+\beta_{1} X \\
\beta_{0} & =E[Y]-\frac{\operatorname{Cov}[X, Y]}{V[X]} E[X] \\
\beta_{1} & =\frac{\operatorname{Cov}[X, Y]}{V[X]}
\end{aligned}
$$

The Population Quantity

- Broadly speaking we are interested in the conditional expectation function (CEF) in part because it minimizes the mean squared error.
- The CEF has a potentially arbitrary shape but there is always a best linear predictor (BLP) or linear projection which is the line given by:

$$
\begin{aligned}
g(X) & =\beta_{0}+\beta_{1} X \\
\beta_{0} & =E[Y]-\frac{\operatorname{Cov}[X, Y]}{V[X]} E[X] \\
\beta_{1} & =\frac{\operatorname{Cov}[X, Y]}{V[X]}
\end{aligned}
$$

- This may not be a good approximation depending on how non-linear the true CEF is. However, it provides us with a reasonable target that always exists.

The Population Quantity

- Broadly speaking we are interested in the conditional expectation function (CEF) in part because it minimizes the mean squared error.
- The CEF has a potentially arbitrary shape but there is always a best linear predictor (BLP) or linear projection which is the line given by:

$$
\begin{aligned}
g(X) & =\beta_{0}+\beta_{1} X \\
\beta_{0} & =E[Y]-\frac{\operatorname{Cov}[X, Y]}{V[X]} E[X] \\
\beta_{1} & =\frac{\operatorname{Cov}[X, Y]}{V[X]}
\end{aligned}
$$

- This may not be a good approximation depending on how non-linear the true CEF is. However, it provides us with a reasonable target that always exists.
- Define deviations from the BLP as

$$
u=Y-g(X)
$$

then, the following properties hold:
(1) $E[u]=0$,
(2) $E[X u]=0$,
(3) $\operatorname{Cov}[X, u]=0$

What is OLS?

What is OLS?

- The best linear predictor is the line that minimizes

$$
\left(\beta_{0}, \beta_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } E\left[\left(Y-b_{0}-b_{1} X\right)^{2}\right]
$$

What is OLS?

- The best linear predictor is the line that minimizes

$$
\left(\beta_{0}, \beta_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } E\left[\left(Y-b_{0}-b_{1} X\right)^{2}\right]
$$

- Ordinary Least Squares (OLS) is a method for minimizing the sample analog of this quantity. It solves the optimization problem:

$$
\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

What is OLS?

- The best linear predictor is the line that minimizes

$$
\left(\beta_{0}, \beta_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } E\left[\left(Y-b_{0}-b_{1} X\right)^{2}\right]
$$

- Ordinary Least Squares (OLS) is a method for minimizing the sample analog of this quantity. It solves the optimization problem:

$$
\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- In words, the OLS estimates are the intercept and slope that minimize the sum of the squared residuals.

What is OLS?

- The best linear predictor is the line that minimizes

$$
\left(\beta_{0}, \beta_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } E\left[\left(Y-b_{0}-b_{1} X\right)^{2}\right]
$$

- Ordinary Least Squares (OLS) is a method for minimizing the sample analog of this quantity. It solves the optimization problem:

$$
\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- In words, the OLS estimates are the intercept and slope that minimize the sum of the squared residuals.
- There are many loss functions, but OLS uses the squared error loss which is connected to the conditional expectation function. If we chose a different loss, we would target a different feature of the conditional distribution.

Deriving the OLS estimator

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.
(2) Set each of the partial derivatives to 0

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.
(2) Set each of the partial derivatives to 0
(3) Solve for $\left\{b_{0}, b_{1}\right\}$ and replace them with the solutions

Deriving the OLS estimator

- Let's think about n pairs of sample observations: $\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.
(2) Set each of the partial derivatives to 0
(3) Solve for $\left\{b_{0}, b_{1}\right\}$ and replace them with the solutions
- We are going to step through this process together.

Step 1: Take Partial Derivatives

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-X_{i} b_{1}\right)^{2}
$$

Step 1: Take Partial Derivatives

$$
\begin{aligned}
S\left(b_{0}, b_{1}\right) & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-X_{i} b_{1}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}^{2}-2 Y_{i} b_{0}-2 Y_{i} b_{1} X_{i}+b_{0}^{2}+2 b_{0} b_{1} X_{i}+b_{1}^{2} X_{i}^{2}\right)
\end{aligned}
$$

Step 1: Take Partial Derivatives

$$
\begin{aligned}
S\left(b_{0}, b_{1}\right) & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-X_{i} b_{1}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}^{2}-2 Y_{i} b_{0}-2 Y_{i} b_{1} X_{i}+b_{0}^{2}+2 b_{0} b_{1} X_{i}+b_{1}^{2} X_{i}^{2}\right) \\
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =\sum_{i=1}^{n}\left(-2 Y_{i}+2 b_{0}+2 b_{1} X_{i}\right)
\end{aligned}
$$

Step 1: Take Partial Derivatives

$$
\begin{aligned}
S\left(b_{0}, b_{1}\right) & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-X_{i} b_{1}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}^{2}-2 Y_{i} b_{0}-2 Y_{i} b_{1} X_{i}+b_{0}^{2}+2 b_{0} b_{1} X_{i}+b_{1}^{2} X_{i}^{2}\right) \\
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =\sum_{i=1}^{n}\left(-2 Y_{i}+2 b_{0}+2 b_{1} X_{i}\right) \\
& =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
\end{aligned}
$$

Step 1: Take Partial Derivatives

$$
\begin{aligned}
S\left(b_{0}, b_{1}\right) & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-X_{i} b_{1}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}^{2}-2 Y_{i} b_{0}-2 Y_{i} b_{1} X_{i}+b_{0}^{2}+2 b_{0} b_{1} X_{i}+b_{1}^{2} X_{i}^{2}\right) \\
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =\sum_{i=1}^{n}\left(-2 Y_{i}+2 b_{0}+2 b_{1} X_{i}\right) \\
& =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{1}} & =\sum_{i=1}^{n}\left(-2 Y_{i} X_{i}+2 b_{0} X_{i}+2 b_{1} X_{i}^{2}\right)
\end{aligned}
$$

Step 1: Take Partial Derivatives

$$
\begin{aligned}
S\left(b_{0}, b_{1}\right) & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-X_{i} b_{1}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}^{2}-2 Y_{i} b_{0}-2 Y_{i} b_{1} X_{i}+b_{0}^{2}+2 b_{0} b_{1} X_{i}+b_{1}^{2} X_{i}^{2}\right) \\
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =\sum_{i=1}^{n}\left(-2 Y_{i}+2 b_{0}+2 b_{1} X_{i}\right) \\
& =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{1}} & =\sum_{i=1}^{n}\left(-2 Y_{i} X_{i}+2 b_{0} X_{i}+2 b_{1} X_{i}^{2}\right) \\
& =-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
\end{aligned}
$$

Solving for the Intercept

$$
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}}=-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
$$

Solving for the Intercept

$$
\begin{aligned}
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
\end{aligned}
$$

Solving for the Intercept

$$
\begin{aligned}
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
\end{aligned}
$$

Solving for the Intercept

$$
\begin{aligned}
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} b_{0}-\sum_{i=1}^{n} b_{1} X_{i}
\end{aligned}
$$

Solving for the Intercept

$$
\begin{aligned}
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} b_{0}-\sum_{i=1}^{n} b_{1} X_{i} \\
b_{0} n & =\left(\sum_{i=1}^{n} Y_{i}\right)-b_{1}\left(\sum_{i=1}^{n} X_{i}\right)
\end{aligned}
$$

Solving for the Intercept

$$
\begin{aligned}
\frac{\partial S\left(b_{0}, b_{1}\right)}{\partial b_{0}} & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =-2 \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} b_{0}-\sum_{i=1}^{n} b_{1} X_{i} \\
b_{0} n & =\left(\sum_{i=1}^{n} Y_{i}\right)-b_{1}\left(\sum_{i=1}^{n} X_{i}\right) \\
b_{0} & =\bar{Y}-b_{1} \bar{X}
\end{aligned}
$$

A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.

A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.
Lemma (Deviations from the Mean Sum to 0)

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=
$$

A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.
Lemma (Deviations from the Mean Sum to 0)

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=\left(\sum_{i=1}^{n} X_{i}\right)-n \bar{X}
$$

A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.
Lemma (Deviations from the Mean Sum to 0)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) & =\left(\sum_{i=1}^{n} X_{i}\right)-n \bar{X} \\
& =\left(\sum_{i=1}^{n} X_{i}\right)-n \sum_{i=1}^{n} X_{i} / n
\end{aligned}
$$

A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.

Lemma (Deviations from the Mean Sum to 0)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) & =\left(\sum_{i=1}^{n} X_{i}\right)-n \bar{X} \\
& =\left(\sum_{i=1}^{n} X_{i}\right)-n \sum_{i=1}^{n} X_{i} / n \\
& =\left(\sum_{i=1}^{n} X_{i}\right)-\sum_{i=1}^{n} X_{i}
\end{aligned}
$$

A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.
Lemma (Deviations from the Mean Sum to 0)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) & =\left(\sum_{i=1}^{n} X_{i}\right)-n \bar{X} \\
& =\left(\sum_{i=1}^{n} X_{i}\right)-n \sum_{i=1}^{n} X_{i} / n \\
& =\left(\sum_{i=1}^{n} X_{i}\right)-\sum_{i=1}^{n} X_{i} \\
& =0
\end{aligned}
$$

Solving for the Slope

$$
0=-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
$$

Solving for the Slope

$$
\begin{aligned}
& 0=-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)
\end{aligned}
$$

Solving for the Slope

$$
\begin{aligned}
& 0=-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& \left.0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\left(\bar{Y}-b_{1} \bar{X}\right)-b_{1} X_{i}\right) \quad \text { (sub in } b_{0}\right)
\end{aligned}
$$

Solving for the Slope

$$
\begin{aligned}
& 0=-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& \left.0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\left(\bar{Y}-b_{1} \bar{X}\right)-b_{1} X_{i}\right) \quad \text { (sub in } b_{0}\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}-b_{1}\left(X_{i}-\bar{X}\right)\right)
\end{aligned}
$$

Solving for the Slope

$$
\begin{aligned}
& 0=-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\left(\bar{Y}-b_{1} \bar{X}\right)-b_{1} X_{i}\right) \quad\left(\text { sub in } b_{0}\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}-b_{1}\left(X_{i}-\bar{X}\right)\right) \\
& 0=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}\right)-b_{1} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)
\end{aligned}
$$

Solving for the Slope

$$
\begin{aligned}
0 & =-2 \sum_{i=1}^{n} x_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\left(\bar{Y}-b_{1} \bar{X}\right)-b_{1} X_{i}\right) \\
0 & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}-b_{1}\left(X_{i}-\bar{X}\right)\right) \\
0 & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-b_{1} \sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right) \\
b_{1} \sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-\bar{X} \sum_{i=1}\left(Y_{i}-\bar{Y}\right)
\end{aligned}
$$

Solving for the Slope

$$
b_{1} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}\right)-\bar{X} \sum_{i=1}\left(Y_{i}-\bar{Y}\right)
$$

Solving for the Slope

$$
\begin{aligned}
& b_{1} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}\right)-\bar{X} \sum_{i=1}\left(Y_{i}-\bar{Y}\right) \\
& b_{1} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\bar{Y}\right)-\sum_{i=1} \bar{X}\left(Y_{i}-\bar{Y}\right)
\end{aligned}
$$

Solving for the Slope

$$
\begin{align*}
b_{1} \sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-\bar{X} \sum_{i=1}\left(Y_{i}-\bar{Y}\right) \\
b_{1} \sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-\sum_{i=1} \bar{X}\left(Y_{i}-\bar{Y}\right) \\
b_{1}\left(\sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)-\sum_{i=1} \bar{X}\left(X_{i}-\bar{X}\right)\right) & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \tag{add 0}
\end{align*}
$$

Solving for the Slope

$$
\begin{aligned}
b_{1} \sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-\bar{X} \sum_{i=1}\left(Y_{i}-\bar{Y}\right) \\
b_{1} \sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-\sum_{i=1} \bar{X}\left(Y_{i}-\bar{Y}\right) \\
b_{1}\left(\sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right)-\sum_{i=1} \bar{X}\left(X_{i}-\bar{X}\right)\right) & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \quad \text { add } 0 \\
b_{1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)
\end{aligned}
$$

Solving for the Slope

$$
\begin{aligned}
b_{1} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-\bar{X} \sum_{i=1}\left(Y_{i}-\bar{Y}\right) \\
b_{1} \sum_{i=1}^{n} x_{i}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} x_{i}\left(Y_{i}-\bar{Y}\right)-\sum_{i=1} \bar{X}\left(Y_{i}-\bar{Y}\right) \\
b_{1}\left(\sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)-\sum_{i=1} \bar{X}\left(X_{i}-\bar{X}\right)\right) & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \quad \text { add } 0 \\
b_{1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \\
b_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

The OLS estimator

- Now we're done! Here are the OLS estimators:

$$
\begin{gathered}
\widehat{\beta}_{0}=\bar{Y}-\widehat{\beta}_{1} \bar{X} \\
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{gathered}
$$

Intuition of the OLS estimator

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

- The higher the covariance between X and Y, the higher the slope will be.

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

- The higher the covariance between X and Y, the higher the slope will be.
- Negative covariances \rightarrow negative slopes; positive covariances \rightarrow positive slopes

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

- The higher the covariance between X and Y, the higher the slope will be.
- Negative covariances \rightarrow negative slopes; positive covariances \rightarrow positive slopes
- If X_{i} doesn't vary, the denominator is undefined.
- If Y_{i} doesn't vary, you get a flat line.

Mechanical properties of OLS

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.
(1) The sample mean of the residuals will be zero:

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}=0
$$

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.
(1) The sample mean of the residuals will be zero:

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}=0
$$

(2) The residuals will be uncorrelated with the predictor ($\widehat{\mathrm{Cov}}$ is the sample covariance):

$$
\sum_{i=1}^{n} X_{i} \widehat{u}_{i}=0 \Longrightarrow \widehat{\operatorname{Cov}}\left(X_{i}, \widehat{u}_{i}\right)=0
$$

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.
(1) The sample mean of the residuals will be zero:

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}=0
$$

(2) The residuals will be uncorrelated with the predictor ($\widehat{\mathrm{Cov}}$ is the sample covariance):

$$
\sum_{i=1}^{n} X_{i} \widehat{u}_{i}=0 \Longrightarrow \widehat{\operatorname{Cov}}\left(X_{i}, \widehat{u}_{i}\right)=0
$$

(3) The residuals will be uncorrelated with the fitted values:

$$
\sum_{i=1}^{n} \widehat{Y}_{i} \widehat{u}_{i}=0 \Longrightarrow \widehat{\operatorname{Cov}}\left(\widehat{Y}_{i}, \widehat{u}_{i}\right)=0
$$

OLS slope as a weighted sum of the outcomes

OLS slope as a weighted sum of the outcomes

- One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

OLS slope as a weighted sum of the outcomes

- One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Where here we have the weights, W_{i} as:

$$
W_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

OLS slope as a weighted sum of the outcomes

- One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Where here we have the weights, W_{i} as:

$$
W_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- This is important for two reasons. First, it'll make derivations later much easier. And second, it shows that is just the sum of a random variable. Therefore it is also a random variable.

Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}-\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \bar{Y}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}-\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \bar{Y}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}-\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \bar{Y}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\sum_{i=1}^{n} W_{i} Y_{i}
\end{aligned}
$$

Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}-\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \bar{Y}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\sum_{i=1}^{n} W_{i} Y_{i}
\end{aligned}
$$

Where the weights, W_{i} are:

$$
W_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

We Covered

We Covered

- A brief review of regression

We Covered

- A brief review of regression
- Derivation of the OLS estimator

We Covered

- A brief review of regression
- Derivation of the OLS estimator
- OLS as a weighted sum of outcomes

We Covered

- A brief review of regression
- Derivation of the OLS estimator
- OLS as a weighted sum of outcomes

Next Time: The Classical Perspective

Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression
- goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causal inference
(1) Mechanics of OLS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

Sampling distribution of the OLS estimator

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.
- Let's take a simulation approach to demonstrate:

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.

Sample 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$
Sample 2: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$

Sample k - 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$
Sample k : $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.
- Let's take a simulation approach to demonstrate:
- Let's use some data from Acemoglu, Daron, Simon Johnson, and James A. Robinson. "The colonial origins of comparative development: An empirical investigation." 2000

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug samples into and we get out estimates.
Sample 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$
Sample 2: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$

Sample k - 1: $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$
Sample k : $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.
- Let's take a simulation approach to demonstrate:
- Let's use some data from Acemoglu, Daron, Simon Johnson, and James A. Robinson. "The colonial origins of comparative development: An empirical investigation." 2000
- See how the line varies from sample to sample

Simulation procedure

Simulation procedure

(1) Draw a random sample of size $n=30$ with replacement using sample()

Simulation procedure

(1) Draw a random sample of size $n=30$ with replacement using sample()
(2) Use $\operatorname{lm}()$ to calculate the OLS estimates of the slope and intercept

Simulation procedure

(1) Draw a random sample of size $n=30$ with replacement using sample()
(2) Use $\operatorname{lm}()$ to calculate the OLS estimates of the slope and intercept
(3) Plot the estimated regression line

Population Regression

Randomly sample from AJR

Sampling distribution of OLS

Sampling distribution of OLS

- You can see that the estimated slopes and intercepts vary from sample to sample, but that the "average" of the lines looks about right.

Sampling distribution of intercepts

Sampling distribution of slopes

The Sampling Distribution is a Joint Distribution!

While both the intercept and the slope vary, they vary together.

Sample Mean Properties Review

Sample Mean Properties Review

- In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_{n}.

Sample Mean Properties Review

- In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_{n}.
- Under essentially only the iid assumption (plus finite mean and variance) we derived the large sample distribution as

$$
\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Sample Mean Properties Review

- In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_{n}.
- Under essentially only the iid assumption (plus finite mean and variance) we derived the large sample distribution as

$$
\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- This means the estimator is unbiased for the population mean: $E\left[\bar{X}_{n}\right]=\mu$.

Sample Mean Properties Review

- In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_{n}.
- Under essentially only the iid assumption (plus finite mean and variance) we derived the large sample distribution as

$$
\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- This means the estimator is unbiased for the population mean: $E\left[\bar{X}_{n}\right]=\mu$.
- has sampling variance: σ^{2} / n

Sample Mean Properties Review

- In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_{n}.
- Under essentially only the iid assumption (plus finite mean and variance) we derived the large sample distribution as

$$
\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- This means the estimator is unbiased for the population mean:

$$
E\left[\bar{X}_{n}\right]=\mu .
$$

- has sampling variance: σ^{2} / n
- and standard error: σ / \sqrt{n}

Sample Mean Properties Review

- In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_{n}.
- Under essentially only the iid assumption (plus finite mean and variance) we derived the large sample distribution as

$$
\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- This means the estimator is unbiased for the population mean:

$$
E\left[\bar{X}_{n}\right]=\mu .
$$

- has sampling variance: σ^{2} / n
- and standard error: σ / \sqrt{n}
- This in turn gave us confidence intervals and hypothesis tests.

Sample Mean Properties Review

- In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_{n}.
- Under essentially only the iid assumption (plus finite mean and variance) we derived the large sample distribution as

$$
\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- This means the estimator is unbiased for the population mean:

$$
E\left[\bar{X}_{n}\right]=\mu .
$$

- has sampling variance: σ^{2} / n
- and standard error: σ / \sqrt{n}
- This in turn gave us confidence intervals and hypothesis tests.
- We will use the same strategy here!

Our goal

Our goal

- What is the sampling distribution of the OLS slope?

$$
\widehat{\beta}_{1} \sim ?(?, ?)
$$

Our goal

- What is the sampling distribution of the OLS slope?

$$
\widehat{\beta}_{1} \sim ?(?, ?)
$$

- We need fill in those ?s.

Our goal

- What is the sampling distribution of the OLS slope?

$$
\widehat{\beta}_{1} \sim ?(?, ?)
$$

- We need fill in those ?s.
- We'll start with the mean of the sampling distribution. Is the estimator centered at the true value, β_{1} ?

Classical Model: OLS Assumptions Preview

Classical Model: OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified

Classical Model: OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.

Classical Model: OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.

Classical Model: OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.
(1) Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable

Classical Model: OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.
(1) Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable
(5) Homoskedasticity: The error term has the same variance conditional on all values of the explanatory variable.

Classical Model: OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.
(9) Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable
(5) Homoskedasticity: The error term has the same variance conditional on all values of the explanatory variable.
(0) Normality: The error term is independent of the explanatory variables and normally distributed.

Classical Model: OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.
(9) Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable
(5) Homoskedasticity: The error term has the same variance conditional on all values of the explanatory variable.
(0) Normality: The error term is independent of the explanatory variables and normally distributed.

Hierarchy of OLS Assumptions

Hierarchy of OLS Assumptions

OLS Assumption I

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Note that it can be nonlinear in variables

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Note that it can be nonlinear in variables
- OK: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ or

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}^{2}+u_{i} \text { or }
$$

$$
Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u
$$

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Note that it can be nonlinear in variables
- OK: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ or

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i}^{2}+u_{i} \text { or } \\
& Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u
\end{aligned}
$$

- Not OK: $Y_{i}=\beta_{0}+\beta_{1}^{2} X_{i}+u_{i}$ or

$$
Y_{i}=\beta_{0}+\exp \left(\beta_{1}\right) X_{i}+u_{i}
$$

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Note that it can be nonlinear in variables
- OK: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ or

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}^{2}+u_{i} \text { or }
$$

$$
Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u
$$

- Not OK: $Y_{i}=\beta_{0}+\beta_{1}^{2} X_{i}+u_{i}$ or

$$
Y_{i}=\beta_{0}+\exp \left(\beta_{1}\right) X_{i}+u_{i}
$$

- β_{0}, β_{1} : Population parameters - fixed and unknown

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Note that it can be nonlinear in variables
- OK: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ or

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i}^{2}+u_{i} \text { or } \\
& Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u
\end{aligned}
$$

- Not OK: $Y_{i}=\beta_{0}+\beta_{1}^{2} X_{i}+u_{i}$ or

$$
Y_{i}=\beta_{0}+\exp \left(\beta_{1}\right) X_{i}+u_{i}
$$

- β_{0}, β_{1} : Population parameters - fixed and unknown
- u_{i} : Unobserved random variable with $E\left[u_{i}\right]=0$ - captures all other factors influencing Y_{i} other than X_{i}

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Note that it can be nonlinear in variables
- OK: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ or

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i}^{2}+u_{i} \text { or } \\
& Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u
\end{aligned}
$$

- Not OK: $Y_{i}=\beta_{0}+\beta_{1}^{2} X_{i}+u_{i}$ or

$$
Y_{i}=\beta_{0}+\exp \left(\beta_{1}\right) X_{i}+u_{i}
$$

- β_{0}, β_{1} : Population parameters - fixed and unknown
- u_{i} : Unobserved random variable with $E\left[u_{i}\right]=0$ - captures all other factors influencing Y_{i} other than X_{i}
- We assume this to be the structural model, i.e., the model describing the true process generating Y_{i}

OLS Assumption II

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

Potential Violations:

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

Potential Violations:

- Time series data (regressor values may exhibit persistence)

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

Potential Violations:

- Time series data (regressor values may exhibit persistence)
- Sample selection problems (sample not representative of the population)

OLS Assumption III

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

Why do we need this?

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

Why do we need this?

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

This assumption is needed just to calculate $\hat{\beta}$.

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)

The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

Why do we need this?

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

This assumption is needed just to calculate $\hat{\beta}$.
Only assumption needed for using OLS as a pure data summary.

Stuck in a moment

- Why does this matter?

Stuck in a moment

- Why does this matter?

Stuck in a moment

- Why does this matter? How would you draw the line of best fit through this scatterplot, which is a violation of this assumption?

OLS Assumption IV

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E\left[u_{i} \mid X_{i}=x\right]=0
$$

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E\left[u_{i} \mid X_{i}=x\right]=0
$$

- $E\left[u_{i} \mid X\right]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E\left[u_{i} \mid X_{i}=x\right]=0
$$

- $E\left[u_{i} \mid X\right]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$
- Given random sampling, $E[u \mid X]=0$ also implies $E\left[u_{i} \mid x_{i}\right]=0$ for all i

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E\left[u_{i} \mid X_{i}=x\right]=0
$$

- $E\left[u_{i} \mid X\right]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$
- Given random sampling, $E[u \mid X]=0$ also implies $E\left[u_{i} \mid x_{i}\right]=0$ for all i

Violating the zero conditional mean assumption

Assumption 4 violated

Assumption 4 not violated

Violating the zero conditional mean assumption

Unbiasedness

With Assumptions 1-4, we can show that the OLS estimator for the slope is unbiased, that is $E\left[\widehat{\beta}_{1}\right]=\beta_{1}$.

Let's prove it!

Lemma 3: Weighted Combinations of X_{i}

Lemma $\left(\sum_{i} W_{i} X_{i}=1\right)$

Lemma 3: Weighted Combinations of X_{i}

Lemma $\left(\sum_{i} W_{i} X_{i}=1\right)$

$$
\sum_{i=1}^{n} W_{i} X_{i}=\sum_{i=1}^{n} \frac{X_{i}\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}
$$

Lemma 3: Weighted Combinations of X_{i}

Lemma $\left(\sum_{i} W_{i} X_{i}=1\right)$

$$
\begin{aligned}
\sum_{i=1}^{n} W_{i} X_{i} & =\sum_{i=1}^{n} \frac{X_{i}\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)
\end{aligned}
$$

Lemma 3: Weighted Combinations of X_{i}

Lemma $\left(\sum_{i} W_{i} X_{i}=1\right)$

$$
\begin{aligned}
\sum_{i=1}^{n} W_{i} X_{i} & =\sum_{i=1}^{n} \frac{X_{i}\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right) \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}\left[\sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)-\sum_{i=1}^{n} \bar{X}\left(X_{i}-\bar{X}\right)\right]
\end{aligned}
$$

Lemma 3: Weighted Combinations of X_{i}

Lemma $\left(\sum_{i} W_{i} X_{i}=1\right)$

$$
\begin{aligned}
\sum_{i=1}^{n} W_{i} X_{i} & =\sum_{i=1}^{n} \frac{X_{i}\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right) \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}\left[\sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)-\sum_{i=1}^{n} \bar{X}\left(X_{i}-\bar{X}\right)\right] \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)
\end{aligned}
$$

Lemma 3: Weighted Combinations of X_{i}

Lemma $\left(\sum_{i} W_{i} X_{i}=1\right)$

$$
\begin{aligned}
\sum_{i=1}^{n} W_{i} X_{i} & =\sum_{i=1}^{n} \frac{X_{i}\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right) \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}\left[\sum_{i=1}^{n} X_{i}\left(X_{i}-\bar{X}\right)-\sum_{i=1}^{n} \bar{X}\left(X_{i}-\bar{X}\right)\right] \\
& =\frac{1}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right) \\
& =1
\end{aligned}
$$

Lemma 4: Estimation Error

Lemma

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

Lemma 4: Estimation Error

Lemma

$$
\begin{aligned}
\widehat{\beta}_{1} & =\sum_{i=1}^{n} W_{i} Y_{i} \\
& =\sum_{i=1}^{n} W_{i}\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right)
\end{aligned}
$$

Lemma 4: Estimation Error

Lemma

$$
\begin{aligned}
\widehat{\beta}_{1} & =\sum_{i=1}^{n} W_{i} Y_{i} \\
& =\sum_{i=1}^{n} W_{i}\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right) \\
& =\beta_{0}\left(\sum_{i=1}^{n} W_{i}\right)+\beta_{1}\left(\sum_{i=1}^{n} W_{i} X_{i}\right)+\sum_{i=1}^{n} W_{i} u_{i}
\end{aligned}
$$

Lemma 4: Estimation Error

Lemma

$$
\begin{aligned}
\widehat{\beta}_{1} & =\sum_{i=1}^{n} W_{i} Y_{i} \\
& =\sum_{i=1}^{n} W_{i}\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right) \\
& =\beta_{0}\left(\sum_{i=1}^{n} W_{i}\right)+\beta_{1}\left(\sum_{i=1}^{n} W_{i} X_{i}\right)+\sum_{i=1}^{n} W_{i} u_{i} \\
& =\beta_{1}+\sum_{i=1}^{n} W_{i} u_{i}
\end{aligned}
$$

Lemma 4: Estimation Error

Lemma

$$
\begin{aligned}
\hat{\beta}_{1} & =\sum_{i=1}^{n} W_{i} Y_{i} \\
& =\sum_{i=1}^{n} W_{i}\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right) \\
& =\beta_{0}\left(\sum_{i=1}^{n} W_{i}\right)+\beta_{1}\left(\sum_{i=1}^{n} W_{i} X_{i}\right)+\sum_{i=1}^{n} W_{i} u_{i} \\
& =\beta_{1}+\sum_{i=1}^{n} W_{i} u_{i} \\
\hat{\beta}_{1}-\beta_{1} & =\sum_{i=1}^{n} W_{i} u_{i}
\end{aligned}
$$

Unbiasedness Proof

$$
E\left[\hat{\beta}_{1}-\beta_{1} \mid X\right]=E\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right]
$$

Unbiasedness Proof

$$
\begin{aligned}
E\left[\hat{\beta}_{1}-\beta_{1} \mid X\right] & =E\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1}^{n} E\left[W_{i} u_{i} \mid X\right]
\end{aligned}
$$

Unbiasedness Proof

$$
\begin{aligned}
E\left[\hat{\beta}_{1}-\beta_{1} \mid X\right] & =E\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1}^{n} E\left[W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1}^{1} W_{i} E\left[u_{i} \mid X\right]
\end{aligned}
$$

Unbiasedness Proof

$$
\begin{aligned}
E\left[\hat{\beta}_{1}-\beta_{1} \mid X\right] & =E\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1}^{n} E\left[W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1} W_{i} E\left[u_{i} \mid X\right] \\
& =\sum_{i=1} W_{i} 0
\end{aligned}
$$

Unbiasedness Proof

$$
\begin{aligned}
E\left[\hat{\beta}_{1}-\beta_{1} \mid X\right] & =E\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1}^{n} E\left[W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1} W_{i} E\left[u_{i} \mid X\right] \\
& =\sum_{i=1} W_{i} 0 \\
& =0
\end{aligned}
$$

Unbiasedness Proof

$$
\begin{aligned}
E\left[\hat{\beta}_{1}-\beta_{1} \mid X\right] & =E\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1}^{n} E\left[W_{i} u_{i} \mid X\right] \\
& =\sum_{i=1} W_{i} E\left[u_{i} \mid X\right] \\
& =\sum_{i=1} W_{i} 0 \\
& =0
\end{aligned}
$$

Using iterated expectations we can show that it is also unconditionally biased $\left.E\left[\hat{\beta}_{1}\right]=E\left[E\left[\hat{\beta}_{1} \mid X\right]\right]=E \beta_{1}\right]=\beta_{1}$.

Consistency

Consistency

- Recall the estimation error,

$$
\hat{\beta}_{1}=\beta_{1}+\sum_{i=1}^{n} W_{i} u_{i}
$$

Consistency

- Recall the estimation error,

$$
\hat{\beta_{1}}=\beta_{1}+\sum_{i=1}^{n} W_{i} u_{i}
$$

- Under iid sampling we have

$$
\sum_{i=1}^{n} W_{i} u_{i}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) u_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)} \xrightarrow{p} \frac{\operatorname{Cov}\left[X_{i}, u_{i}\right]}{V\left[X_{i}\right]}
$$

Consistency

- Recall the estimation error,

$$
\hat{\beta}_{1}=\beta_{1}+\sum_{i=1}^{n} W_{i} u_{i}
$$

- Under iid sampling we have

$$
\sum_{i=1}^{n} W_{i} u_{i}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) u_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)} \xrightarrow[\rightarrow]{p} \frac{\operatorname{Cov}\left[X_{i}, u_{i}\right]}{V\left[X_{i}\right]}
$$

- Under A5 (zero conditional mean error) we have the slightly weaker property $\operatorname{Cov}\left[X_{i}, u_{i}\right]=0$ so as long as $V[X]>0$, then we have,

$$
\hat{\beta}_{1} \xrightarrow{p} \beta_{1}
$$

We Covered

We Covered

- The first four assumptions of the classical model

We Covered

- The first four assumptions of the classical model
- We showed that these four were sufficient to establish unbiasedness and consistency.

We Covered

- The first four assumptions of the classical model
- We showed that these four were sufficient to establish unbiasedness and consistency.
- We even proved it to ourselves!

Next Time: The Classical Perspective Part 2: Variance.

Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression
- goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causal inference
(1) Mechanics of OLS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective

4) Inference

- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

Where are we?

Where are we?

- Now we know that, under Assumptions 1-4, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, ?\right)
$$

Where are we?

- Now we know that, under Assumptions 1-4, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, ?\right)
$$

- That is we know that the sampling distribution is centered on the true population slope, but we don't know the population variance.

Sampling variance of estimated slope

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors
(6) Homoskedasticity

Variance of OLS Estimators

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)
- Taken together, Assumptions I-V imply:

$$
\begin{gathered}
E[Y \mid X]=\beta_{0}+\beta_{1} X \\
\operatorname{Var}[Y \mid X]=\sigma_{u}^{2}
\end{gathered}
$$

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)
- Taken together, Assumptions I-V imply:

$$
\begin{gathered}
E[Y \mid X]=\beta_{0}+\beta_{1} X \\
\operatorname{Var}[Y \mid X]=\sigma_{u}^{2}
\end{gathered}
$$

- Violation: $\operatorname{Var}\left[u \mid X=x_{1}\right] \neq \operatorname{Var}\left[u \mid X=x_{2}\right]$ called heteroskedasticity.

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)
- Taken together, Assumptions I-V imply:

$$
\begin{gathered}
E[Y \mid X]=\beta_{0}+\beta_{1} X \\
\operatorname{Var}[Y \mid X]=\sigma_{u}^{2}
\end{gathered}
$$

- Violation: $\operatorname{Var}\left[u \mid X=x_{1}\right] \neq \operatorname{Var}\left[u \mid X=x_{2}\right]$ called heteroskedasticity.
- Assumptions I-V are collectively known as the Gauss-Markov assumptions

Heteroskedasticity

Deriving the sampling variance

$$
V\left[\widehat{\beta}_{1} \mid X\right]=? ?
$$

Deriving the sampling variance

$$
\begin{array}{r}
V\left[\widehat{\beta}_{1} \mid X\right]=? ? \\
V\left[\widehat{\beta}_{1} \mid X\right]=V\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right]
\end{array}
$$

Deriving the sampling variance

$$
\begin{align*}
& V\left[\widehat{\beta}_{1} \mid X\right]=? ? \\
& V\left[\widehat{\beta}_{1} \mid X\right]=V\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
&=\sum_{i=1}^{n} W_{i}^{2} V\left[u_{i} \mid X\right] \tag{A2:iid}
\end{align*}
$$

Deriving the sampling variance

$$
\begin{align*}
& V\left[\widehat{\beta}_{1} \mid X\right]=? ? \\
& V\left[\widehat{\beta}_{1} \mid X\right]=V\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
&= \sum_{i=1}^{n} W_{i}^{2} V\left[u_{i} \mid X\right] \tag{A2:iid}\\
&= \sum_{i=1}^{n} W_{i}^{2} \sigma_{u}^{2}
\end{align*}
$$

(A5: homoskedastic)

Deriving the sampling variance

$$
\begin{aligned}
& V\left[\widehat{\beta}_{1} \mid X\right]=? ? \\
& V\left[\widehat{\beta_{1}} \mid X\right]=V\left[\sum_{i=1}^{n} W_{i} u_{i} \mid X\right] \\
&=\sum_{i=1}^{n} W_{i}^{2} V\left[u_{i} \mid X\right] \quad \text { (A2: iid) } \\
&=\sum_{i=1}^{n} W_{i}^{2} \sigma_{u}^{2} \quad \text { (A5: homoskedastic) } \\
&=\sigma_{u}^{2} \sum_{i=1}^{n}\left(\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i^{\prime}=1}^{n}\left(X_{i^{\prime}}-\bar{X}\right)^{2}}\right)^{2}
\end{aligned}
$$

Deriving the sampling variance

\[

\]

Variance of OLS Estimators

Theorem (Variance of OLS Estimators)
Given OLS Assumptions I-V (Gauss-Markov Assumptions):

$$
\begin{gathered}
V\left[\hat{\beta}_{1} \mid X\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
V\left[\hat{\beta}_{0} \mid X\right]=\sigma_{u}^{2}\left\{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right\}
\end{gathered}
$$

where $V[u \mid X]=\sigma_{u}^{2}$ (the error variance).

Understanding the sampling variance

$$
V\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?

Understanding the sampling variance

$$
V\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?
- The higher the variance of $Y_{i} \mid X_{i}$, the higher the sampling variance

Understanding the sampling variance

$$
V\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?
- The higher the variance of $Y_{i} \mid X_{i}$, the higher the sampling variance
- The lower the variance of X_{i}, the higher the sampling variance

Understanding the sampling variance

$$
V\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?
- The higher the variance of $Y_{i} \mid X_{i}$, the higher the sampling variance
- The lower the variance of X_{i}, the higher the sampling variance
- As we increase n, the denominator gets large, while the numerator is fixed and so the sampling variance shrinks to 0 .

Variance in X Reduces Standard Errors

Variance in X Reduces Standard Errors

Variance in X Reduces Standard Errors

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$?

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$? We can derive an estimator based on the residuals:

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Recall: The errors u_{i} are NOT the same as the residuals \hat{u}_{i}.

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$?
We can derive an estimator based on the residuals:

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Recall: The errors u_{i} are NOT the same as the residuals \hat{u}_{i}.
Intuitively, the scatter of the residuals around the fitted regression line should reflect the unseen scatter about the true population regression line.

We can measure scatter with the mean squared deviation:

$$
\operatorname{MSD}(\hat{u}) \equiv \frac{1}{n} \sum_{i=1}^{n}\left(\hat{u}_{i}-\overline{\hat{u}}\right)^{2}=
$$

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$? We can derive an estimator based on the residuals:

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Recall: The errors u_{i} are NOT the same as the residuals \hat{u}_{i}.
Intuitively, the scatter of the residuals around the fitted regression line should reflect the unseen scatter about the true population regression line.

We can measure scatter with the mean squared deviation:

$$
M S D(\hat{u}) \equiv \frac{1}{n} \sum_{i=1}^{n}\left(\hat{u}_{i}-\overline{\hat{u}}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations
- So the spread of the residuals $M S D(\hat{u})$ will slightly underestimate the error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$ on average

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations
- So the spread of the residuals $\operatorname{MSD}(\hat{u})$ will slightly underestimate the error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$ on average
- In fact, we can show that with a single regressor X we have:

$$
E[M S D(\hat{u})]=\frac{n-2}{n} \sigma_{u}^{2}(\text { degrees of freedom adjustment })
$$

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations
- So the spread of the residuals $M S D(\hat{u})$ will slightly underestimate the error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$ on average
- In fact, we can show that with a single regressor X we have:

$$
E[M S D(\hat{u})]=\frac{n-2}{n} \sigma_{u}^{2} \text { (degrees of freedom adjustment) }
$$

- Thus, an unbiased estimator for the error variance is:

$$
\hat{\sigma}_{u}^{2}=\frac{n}{n-2} M S D(\hat{u})=\frac{n}{n-2} \frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}=\frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

We plug this estimate into the variance estimators for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Now we know the mean and sampling variance of the sampling distribution.
- How does this compare to other estimators for the population slope?

Where are we?

Where are we?

OLS is BLUE :(

OLS is BLUE :(

Theorem (Gauss-Markov)
Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(3) Linear: Among Linear estimators

- Unbiased: Among Linear Unbiased estimators
- Estimator.

OLS is BLUE :(

Theorem (Gauss-Markov)
Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(2) Linear: Among Linear estimators
(3) Unbiased: Among Linear Unbiased estimators
(9) Estimator.

- A linear estimator is one that can be written as $\hat{\beta}=\mathbf{W} y$

OLS is BLUE :(

Theorem (Gauss-Markov)
Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(2) Linear: Among Linear estimators
(3) Unbiased: Among Linear Unbiased estimators
(9) Estimator.

- A linear estimator is one that can be written as $\hat{\beta}=\mathbf{W} y$
- Assumptions 1-5 are called the "Gauss Markov Assumptions"

OLS is BLUE :(

Theorem (Gauss-Markov)
Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(2) Linear: Among Linear estimators
(3) Unbiased: Among Linear Unbiased estimators
(9) Estimator.

- A linear estimator is one that can be written as $\hat{\beta}=\mathbf{W} y$
- Assumptions 1-5 are called the "Gauss Markov Assumptions"
- Result fails to hold when the assumptions are violated!

Gauss-Markov Theorem

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution?

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:
"the sums and means of random variables tend to be Normally distributed in large samples."

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:
"the sums and means of random variables tend to be Normally distributed in large samples."
- True here as well, so we know that in large samples:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:
"the sums and means of random variables tend to be Normally distributed in large samples."
- True here as well, so we know that in large samples:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Can also replace $S E$ with an estimate:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

Where are we?

Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Where are we?

Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Sampling distribution in small samples

- What if we have a small sample? What can we do then?

Sampling distribution in small samples

- What if we have a small sample? What can we do then?
- Can't get something for nothing, but we can make progress if we make another assumption:

Sampling distribution in small samples

- What if we have a small sample? What can we do then?
- Can't get something for nothing, but we can make progress if we make another assumption:
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors
(0) Homoskedasticity

Sampling distribution in small samples

- What if we have a small sample? What can we do then?
- Can't get something for nothing, but we can make progress if we make another assumption:
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors
(0) Homoskedasticity
(c) Errors are conditionally Normal

OLS Assumptions VI

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)
- Non-normality of the errors is a serious concern in small samples. We can partially check this assumption by looking at the residuals (more in coming weeks)

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)
- Non-normality of the errors is a serious concern in small samples. We can partially check this assumption by looking at the residuals (more in coming weeks)
- Variable transformations can help to come closer to normality

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)
- Non-normality of the errors is a serious concern in small samples. We can partially check this assumption by looking at the residuals (more in coming weeks)
- Variable transformations can help to come closer to normality
- Reminder: we don't need normality assumption in large samples

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Furthermore, if we replace the true standard error with the estimated standard error, then we get the following:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Furthermore, if we replace the true standard error with the estimated standard error, then we get the following:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

- The standardized coefficient follows a t distribution $n-2$ degrees of freedom. We take off an extra degree of freedom because we had to estimate one more parameter than just the sample mean.

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Furthermore, if we replace the true standard error with the estimated standard error, then we get the following:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

- The standardized coefficient follows a t distribution $n-2$ degrees of freedom. We take off an extra degree of freedom because we had to estimate one more parameter than just the sample mean.
- All of this depends on Normal errors!

Where are we?

Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Under Assumptions 1-6 and in any sample, we know that

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

Hierarchy of OLS Assumptions

Hierarchy of OLS Assumptions

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
- basically, assume the model is right

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
- basically, assume the model is right
- \rightsquigarrow OLS is BLUE, plus (A6) normality of the errors and we get small sample SEs and BUE.

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
- basically, assume the model is right
- \rightsquigarrow OLS is BLUE, plus (A6) normality of the errors and we get small sample SEs and BUE.
- What is the basic approach here?

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
- basically, assume the model is right
- \rightsquigarrow OLS is BLUE, plus (A6) normality of the errors and we get small sample SEs and BUE.
- What is the basic approach here?
- A1 defines a linear model for the outcome:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
- basically, assume the model is right
- \rightsquigarrow OLS is BLUE, plus (A6) normality of the errors and we get small sample SEs and BUE.
- What is the basic approach here?
- A1 defines a linear model for the outcome:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- A2 and A4 let us write the CEF as function of X_{i} alone.

$$
E\left[Y_{i} \mid X_{i}\right]=\mu_{i}=\beta_{0}+\beta_{1} X_{i}
$$

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
- basically, assume the model is right
- \rightsquigarrow OLS is BLUE, plus (A6) normality of the errors and we get small sample SEs and BUE.
- What is the basic approach here?
- A1 defines a linear model for the outcome:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- A2 and A4 let us write the CEF as function of X_{i} alone.

$$
E\left[Y_{i} \mid X_{i}\right]=\mu_{i}=\beta_{0}+\beta_{1} X_{i}
$$

- A5-6, define a probabilistic model for the conditional distribution:

$$
Y_{i} \mid X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right)
$$

Regression as parametric modeling

Let's summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
- (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
- basically, assume the model is right
- \rightsquigarrow OLS is BLUE, plus (A6) normality of the errors and we get small sample SEs and BUE.
- What is the basic approach here?
- A1 defines a linear model for the outcome:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- A2 and A4 let us write the CEF as function of X_{i} alone.

$$
E\left[Y_{i} \mid X_{i}\right]=\mu_{i}=\beta_{0}+\beta_{1} X_{i}
$$

- A5-6, define a probabilistic model for the conditional distribution:

$$
Y_{i} \mid X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right)
$$

- A3 covers the edge-case that the β s are indistinguishable.

Agnostic views on regression

- These assumptions assume we know a lot about how Y_{i} is 'generated'.

Agnostic views on regression

- These assumptions assume we know a lot about how Y_{i} is 'generated'.
- Justifications for using OLS (like BLUE/BUE) often invoke these assumptions which are unlikely to hold exactly.

Agnostic views on regression

- These assumptions assume we know a lot about how Y_{i} is 'generated'.
- Justifications for using OLS (like BLUE/BUE) often invoke these assumptions which are unlikely to hold exactly.
- Alternative: take an agnostic view on regression.

Agnostic views on regression

- These assumptions assume we know a lot about how Y_{i} is 'generated'.
- Justifications for using OLS (like BLUE/BUE) often invoke these assumptions which are unlikely to hold exactly.
- Alternative: take an agnostic view on regression.
- use OLS without believing these assumptions.

Agnostic views on regression

- These assumptions assume we know a lot about how Y_{i} is 'generated'.
- Justifications for using OLS (like BLUE/BUE) often invoke these assumptions which are unlikely to hold exactly.
- Alternative: take an agnostic view on regression.
- use OLS without believing these assumptions.
- lean on two things: A2 i.i.d. sample, asymptotics (large-sample properties)

Agnostic views on regression

- These assumptions assume we know a lot about how Y_{i} is 'generated'.
- Justifications for using OLS (like BLUE/BUE) often invoke these assumptions which are unlikely to hold exactly.
- Alternative: take an agnostic view on regression.
- use OLS without believing these assumptions.
- lean on two things: A2 i.i.d. sample, asymptotics (large-sample properties)
- Lose the distributional assumptions and focus on approximating the best linear predictor.

Agnostic views on regression

- These assumptions assume we know a lot about how Y_{i} is 'generated'.
- Justifications for using OLS (like BLUE/BUE) often invoke these assumptions which are unlikely to hold exactly.
- Alternative: take an agnostic view on regression.
- use OLS without believing these assumptions.
- lean on two things: A2 i.i.d. sample, asymptotics (large-sample properties)
- Lose the distributional assumptions and focus on approximating the best linear predictor.
- If the true CEF happens to be linear, the best linear predictor is it.

Unbiasedness Result

- One of the results most people know is that OLS is unbiased, but unbiased for what?

Unbiasedness Result

- One of the results most people know is that OLS is unbiased, but unbiased for what?
- It is unbiased for the CEF under the assumption that the model is correctly specified.

Unbiasedness Result

- One of the results most people know is that OLS is unbiased, but unbiased for what?
- It is unbiased for the CEF under the assumption that the model is correctly specified.
- However, this could be a quite poor approximation to the true CEF if there is a great deal of non-linearity.

Unbiasedness Result

- One of the results most people know is that OLS is unbiased, but unbiased for what?
- It is unbiased for the CEF under the assumption that the model is correctly specified.
- However, this could be a quite poor approximation to the true CEF if there is a great deal of non-linearity.
- We will often use OLS as a means to approximate the CEF, but don't forget that it is just an approximation!

Unbiasedness Result

- One of the results most people know is that OLS is unbiased, but unbiased for what?
- It is unbiased for the CEF under the assumption that the model is correctly specified.
- However, this could be a quite poor approximation to the true CEF if there is a great deal of non-linearity.
- We will often use OLS as a means to approximate the CEF, but don't forget that it is just an approximation!
- We will return in a few weeks to how you diagnose this approximation.

Pedagogical Note

Pedagogical Note

- For now we are going to move forward with the classical worldview and we will return to some alternative approaches later in the semester once we are comfortable with the matrix representation of regression.

Pedagogical Note

- For now we are going to move forward with the classical worldview and we will return to some alternative approaches later in the semester once we are comfortable with the matrix representation of regression.
- This will lead to techniques like robust standard errors which don't rely on the assumptions of homoskedasticity (but have other tradeoffs!)

Pedagogical Note

- For now we are going to move forward with the classical worldview and we will return to some alternative approaches later in the semester once we are comfortable with the matrix representation of regression.
- This will lead to techniques like robust standard errors which don't rely on the assumptions of homoskedasticity (but have other tradeoffs!)
- For now, just remember that regression is a linear approximation to the CEF!

We Covered

We Covered

- Sampling Variance

We Covered

- Sampling Variance
- Gauss Markov

We Covered

- Sampling Variance
- Gauss Markov
- Large Sample and Small Sample Properties

We Covered

- Sampling Variance
- Gauss Markov
- Large Sample and Small Sample Properties

Next Time: Inference

Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression
- goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causal inference
(1) Mechanics of OLS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

Where are we?

Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Under Assumptions 1-6 and in any sample, we know that

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$
- Claim we want to test

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$
- Claim we want to test
- Could do one-sided test, but you shouldn't

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$
- Claim we want to test
- Could do one-sided test, but you shouldn't
- Notice these are statements about the population parameters, not the OLS estimates.

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- Under the null hypothesis:

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- Under the null hypothesis:
- large samples: $T \sim \mathcal{N}(0,1)$

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- Under the null hypothesis:
- large samples: $T \sim \mathcal{N}(0,1)$
- any size sample with normal errors: $T \sim t_{n-2}$

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- Under the null hypothesis:
- large samples: $T \sim \mathcal{N}(0,1)$
- any size sample with normal errors: $T \sim t_{n-2}$
- conservative to use t_{n-2} anyways since t_{n-2} is approximately normal in large samples.

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- Under the null hypothesis:
- large samples: $T \sim \mathcal{N}(0,1)$
- any size sample with normal errors: $T \sim t_{n-2}$
- conservative to use t_{n-2} anyways since t_{n-2} is approximately normal in large samples.
- Thus, under the null, we know the distribution of T and can use that to formulate a rejection region and calculate p -values.

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- Under the null hypothesis:
- large samples: $T \sim \mathcal{N}(0,1)$
- any size sample with normal errors: $T \sim t_{n-2}$
- conservative to use t_{n-2} anyways since t_{n-2} is approximately normal in large samples.
- Thus, under the null, we know the distribution of T and can use that to formulate a rejection region and calculate p -values.
- By default, R shows you the test statistic for $\beta_{1}=0$ and uses the t distribution.

Rejection region

- Choose a level of the test, α, and find rejection regions that correspond to that value under the null distribution:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2}<T<t_{\alpha / 2, n-2}\right)=1-\alpha
$$

Rejection region

- Choose a level of the test, α, and find rejection regions that correspond to that value under the null distribution:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2}<T<t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- This is exactly the same as with sample means and sample differences in means, except that the degrees of freedom on the t distribution have changed.

p-value

- The interpretation of the p -value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true

p-value

- The interpretation of the p -value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true
- Mathematically:

$$
\mathbb{P}\left(\left|\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}\right| \geq\left|T_{o b s}\right|\right)
$$

p-value

- The interpretation of the p-value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true
- Mathematically:

$$
\mathbb{P}\left(\left|\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}\right| \geq\left|T_{o b s}\right|\right)
$$

- If the p -value is less than α we would reject the null at the α level.

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- If we rearrange this as before, we can get an expression for confidence intervals:

$$
\mathbb{P}\left(\widehat{\beta}_{1}-t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right] \leq \beta_{1} \leq \widehat{\beta}_{1}+t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]\right)=1-\alpha
$$

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- If we rearrange this as before, we can get an expression for confidence intervals:

$$
\mathbb{P}\left(\widehat{\beta}_{1}-t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right] \leq \beta_{1} \leq \widehat{\beta}_{1}+t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]\right)=1-\alpha
$$

- Thus, we can write the confidence intervals as:

$$
\widehat{\beta}_{1} \pm t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]
$$

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- If we rearrange this as before, we can get an expression for confidence intervals:

$$
\mathbb{P}\left(\widehat{\beta}_{1}-t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right] \leq \beta_{1} \leq \widehat{\beta}_{1}+t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]\right)=1-\alpha
$$

- Thus, we can write the confidence intervals as:

$$
\widehat{\beta}_{1} \pm t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]
$$

- We can derive these for the intercept as well:

$$
\widehat{\beta}_{0} \pm t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{0}\right]
$$

Cls Simulation Example

Returning to our simulation example we can simulate the sampling distributions of the 95% confidence interval estimates for $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$

Cls Simulation Example

Returning to our simulation example we can simulate the sampling distributions of the 95% confidence interval estimates for $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$

Cls Simulation Example

Cls Simulation Example

Prediction error

- How do we judge how well a line fits the data?

Prediction error

- How do we judge how well a line fits the data?
- One way is to find out how much better we do at predicting Y once we include X into the regression model.

Prediction error

- How do we judge how well a line fits the data?
- One way is to find out how much better we do at predicting Y once we include X into the regression model.
- Prediction errors without X : best prediction is the mean, so our squared errors, or the total sum of squares $\left(S S_{t o t}\right)$ would be:

$$
S S_{t o t}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Prediction error

- How do we judge how well a line fits the data?
- One way is to find out how much better we do at predicting Y once we include X into the regression model.
- Prediction errors without X : best prediction is the mean, so our squared errors, or the total sum of squares $\left(S S_{t o t}\right)$ would be:

$$
S S_{t o t}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- Once we have estimated our model, we have new prediction errors, which are just the sum of the squared residuals or $S S_{\text {res }}$:

$$
S S_{r e s}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
$$

Sum of Squares

Total Prediction Errors

Sum of Squares

Residuals

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{\text {res }}}{S S_{\text {tot }}}=1-\frac{S S_{\text {res }}}{S S_{\text {tot }}}
$$

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{\text {res }}}{S S_{\text {tot }}}=1-\frac{S S_{\text {res }}}{S S_{t o t}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{\text {tot }}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{r e s}}{S S_{\text {tot }}}=1-\frac{S S_{r e s}}{S S_{t o t}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.
- Alternatively, this is the fraction of the variation in Y is "explained by" X.

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{\text {tot }}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{\text {res }}}{S S_{\text {tot }}}=1-\frac{S S_{\text {res }}}{S S_{t o t}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.
- Alternatively, this is the fraction of the variation in Y is "explained by" X.
- $R^{2}=0$ means no relationship

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{\text {res }}}{S S_{\text {tot }}}=1-\frac{S S_{\text {res }}}{S S_{t o t}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.
- Alternatively, this is the fraction of the variation in Y is "explained by" X.
- $R^{2}=0$ means no relationship
- $R^{2}=1$ implies perfect linear fit

Is R-squared useful?

Is R-squared useful?

Is R-squared useful?

Is R-squared useful?

Interpreting a Regression

Let's have a quick chat about interpretation.

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264 * * *$
bpop $0.35848 \quad 0.0251914 .232<2 e-16 * * *$

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 \mathrm{e}-16$
"African American population is statistically significant ($p<0.001$)" (no effect size or direction)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264 * * *$
bpop $0.35848 \quad 0.0251914 .232<2 \mathrm{e}-16$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 \mathrm{e}-16$
"Percent African American legislators increases with African American population ($p<$ 0.001)"
(direction, but no effect size)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264 * * *$
bpop $0.35848 \quad 0.0251914 .232<2 \mathrm{e}-16$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 e-16$
"A one percentage point increase in the African American population causes a 0.35 percentage point increase in the fraction of African American state legislators ($p<0.001$)."
(unwarranted causal language)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264$ ***
bpop $0.35848 \quad 0.0251914 .232<2 e^{-16}$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 e-16$
"A one percentage point increase in the African American population is associated with a 0.35 percentage point increase in the fraction of African American state legislators ($p<0.001$)."
(hints at causality)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264$ ***
bpop $0.35848 \quad 0.0251914 .232<2 \mathrm{e}-16 * * *$

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 e-16$
"In states where an additional .01 proportion of the population is African American, we observe on average . 035 proportion more African American state legislators ($p<0.001$)."
(p value doesn't help people with uncertainty)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264$ ***
bpop $0.35848 \quad 0.02519 \quad 14.232<2 \mathrm{e}-16$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 \mathrm{e}-16$
"In states where an additional .01 proportion of the population is African American, we observe on average . 035 proportion more African American state legislators (between .03 and .04 with 95% confidence)."
(still not perfect, the best will be subject matter specific. is fairly clear it is non-causal, gives uncertainty.)

Ground Rules: Interpretation of the Slope

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units
(2) If the association has a causal interpretation explain why, otherwise do not imply a causal interpretation.

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units
(2) If the association has a causal interpretation explain why, otherwise do not imply a causal interpretation.
(3) Provide a meaningful sense of uncertainty

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units
(2) If the association has a causal interpretation explain why, otherwise do not imply a causal interpretation.
(3) Provide a meaningful sense of uncertainty
(1) Indicate the practical significance of the finding for your argument.

Goal Check: Understand $\operatorname{lm}()$ Output

Call:

```
lm(formula = sr ~ pop15, data = LifeCycleSavings)
```

Residuals:

Min	1Q	Median	3Q	Max
-8.637	-2.374	0.349	2.022	11.155

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

| (Intercept) | 17.49660 | 2.27972 | 7.675 | $6.85 \mathrm{e}-10$ |
| :--- | :--- | :--- | ---: | :--- | ***

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ ' $* *$ ' 0.01 '*' 0.05 '.' 0.1 ' ,

Residual standard error: 4.03 on 48 degrees of freedom Multiple R-squared: 0.2075,Adjusted R-squared: 0.191 F-statistic: 12.57 on 1 and 48 DF, p-value: 0.0008866

We Covered

We Covered

- Hypothesis tests

We Covered

- Hypothesis tests
- Confidence intervals

We Covered

- Hypothesis tests
- Confidence intervals
- Goodness of fit measures

We Covered

- Hypothesis tests
- Confidence intervals
- Goodness of fit measures

Next Time: Non-linearities

Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- mechanics and properties of simple linear regression
- inference and measures of model fit
- confidence intervals for regression
- goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causal inference
(1) Mechanics of OLS
(2) Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

(1) Mechanics of OLS

(2) Classical Perspective (Part 1, Unbiasedness)

- Sampling Distributions
- Classical Assumptions 1-4
(B) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

Non-linear CEFs

Non-linear CEFs

- When we say that CEFs are linear with regression, we mean linear in parameters but by including transformations of our variables we can make non-linear shapes of pre-specified functional forms.

Non-linear CEFs

- When we say that CEFs are linear with regression, we mean linear in parameters but by including transformations of our variables we can make non-linear shapes of pre-specified functional forms.
- Many of these non-linear transformations are made by creating multiple variables out of a single X and so will have to wait for future weeks.

Non-linear CEFs

- When we say that CEFs are linear with regression, we mean linear in parameters but by including transformations of our variables we can make non-linear shapes of pre-specified functional forms.
- Many of these non-linear transformations are made by creating multiple variables out of a single X and so will have to wait for future weeks.
- The function $\log (\cdot)$ is one common transformation that has only one parameter.

Non-linear CEFs

- When we say that CEFs are linear with regression, we mean linear in parameters but by including transformations of our variables we can make non-linear shapes of pre-specified functional forms.
- Many of these non-linear transformations are made by creating multiple variables out of a single X and so will have to wait for future weeks.
- The function $\log (\cdot)$ is one common transformation that has only one parameter.
- This is particularly useful for positive and right-skewed variables.

Why does everyone keep logging stuff??

Logs linearize exponential growth.

How? Let's look.

First, here's a graph showing exponential growth.

What happens when we take the log of y ?

$$
\log y=z \quad e^{z}=y
$$

What happens when we take the log of y ?

$\boldsymbol{\operatorname { l o g }} 1=0$
 $\mathrm{e}^{0}=1$

We're going
to use $y=$
any other
exponent
expont
will work

X

What happens when we take the log of y ?

$$
\log 2=.69 \quad e^{69}=2
$$

We're g to use $y=$ any oth will wo	2	
X	y	Z
0	1	0
1	2	. 69
2	4	
3	8	
4	16	
5	32	
6	64	
7	128	
8	256	
9	512	
10	1024	

What happens when we take the log of y ?

$$
\log 4=1.39 \quad e^{1.39}=4
$$

	2	
X	y	Z
0	1	0
1	2	. 69
2	4	1.39
3	8	
4	16	
5	32	
6	64	
7	128	
8	256	
9	512	
10	1024	

What happens when we take the log of y ?

$\log 8=2.08 \quad e^{2.08}=8$

We're going
to use $y=2$, but
any other
exponent
will work

What happens when we take the log of y ?

Interpretation

Interpretation

The log transformation changes the interpretation of β_{1} :

Interpretation

The log transformation changes the interpretation of β_{1} :

- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in our prediction of Y associated with one unit increase in X.

Interpretation

The log transformation changes the interpretation of β_{1} :

- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in our prediction of Y associated with one unit increase in X.
- Regress Y on $\log (X) \longrightarrow \beta_{1}$ approximates increase in Y associated with a percent increase in X.

Interpretation

The log transformation changes the interpretation of β_{1} :

- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in our prediction of Y associated with one unit increase in X.
- Regress Y on $\log (X) \longrightarrow \beta_{1}$ approximates increase in Y associated with a percent increase in X.
- Note that these approximations work only for small increments.

Interpretation

The log transformation changes the interpretation of β_{1} :

- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in our prediction of Y associated with one unit increase in X.
- Regress Y on $\log (X) \longrightarrow \beta_{1}$ approximates increase in Y associated with a percent increase in X.
- Note that these approximations work only for small increments.
- In particular, they do not work when X is a discrete random variable.

Example from the American War Library

$$
\hat{\beta}_{1}=1.23 \longrightarrow
$$

Example from the American War Library

$\hat{\beta}_{1}=1.23 \longrightarrow$ One additional soldier killed predicts 1.23 additional soldiers wounded

Wounded (Scale in Levels)

```
World War II
Civil War, North
World War
Vietnam War
Civil War.South
Korean War
Okinawa
Operation Iraqi Freedom, Iraq
Iwo Jima
Revolutionary War
War of }181
Aleutian Campaign
D-Day.
Philippines War
Indian Wars
Spanish American War
Terrorism, World Trade Center
Yemen, U'SS Cole
Terrorism Khobar Towers, Saudi Arabia
Persian Gulf
Terrorism Oklahoma City
Persian Gulf, Op Desert Shield/Storm
Russia North Expedition
Moro Campaigns
China Boxer Rebellion
Panama
Danaminican Republic
Drminican Republic Liberty
ebanon
Texas War Of Independence
South Kore
Grenada
China Yangtze Service
Mexico
Nicaragua
Russia Siberia Expedition
Dominican Repub
China Civil War
Terrorism Riyadh, Saudi Arabia
North Atlantic Naval War
Franco-Amer Naval War
Operation Enduring Freedom, Afghanistan
Mexican War
Operation Enduring Freedom, Afghanistan Theater
Haiti
Texas Border Cortina War
Nicaragua
taly Trieste
Japan
```


Wounded (Logarithmic Scale)

Regression: Log-Level

$$
\hat{\beta}_{1}=0.0000237 \longrightarrow
$$

Regression: Log-Level

$\hat{\beta}_{1}=0.0000237 \longrightarrow$ One additional soldier killed predicts 0.0023 percent increase in the number of soldiers wounded

Regression: Log-Log

$$
\hat{\beta}_{1}=0.797 \longrightarrow
$$

Regression: Log-Log

$\hat{\beta}_{1}=0.797 \longrightarrow \mathrm{~A}$ percent increase in deaths predicts 0.797 percent increase in the wounded

Four Most Commonly Used Models

Model	Equation	β_{1} Interpretation
Level-Level	$Y=\beta_{0}+\beta_{1} X$	$\Delta Y=\beta_{1} \Delta X$
Log-Level	$\log (Y)=\beta_{0}+\beta_{1} X$	$\% \Delta Y=100 \beta_{1} \Delta X$
Level-Log	$Y=\beta_{0}+\beta_{1} \log (X)$	$\Delta Y=\left(\beta_{1} / 100\right) \% \Delta X$
Log-Log	$\log (Y)=\beta_{0}+\beta_{1} \log (X)$	$\% \Delta Y=\beta_{1} \% \Delta X$

Why Does This Approximation Work?

Why Does This Approximation Work?

A useful thing to know is that for small x,

$$
\begin{aligned}
\log (1+x) & \approx x \\
\quad \exp (x) & \approx 1+x
\end{aligned}
$$

Why Does This Approximation Work?

A useful thing to know is that for small x,

$$
\begin{aligned}
\log (1+x) & \approx x \\
\quad \exp (x) & \approx 1+x
\end{aligned}
$$

This can be derived from a series expansion of the log function. Numerically, when $|x| \leq .1$, the approximation is within 0.001 .

Why Does This Approximation Work?

Take two numbers $a>b>0$. The percentage difference between a and b is

$$
p=100\left(\frac{a-b}{b}\right)
$$

Why Does This Approximation Work?

Take two numbers $a>b>0$. The percentage difference between a and b is

$$
p=100\left(\frac{a-b}{b}\right)
$$

We can rewrite this as

$$
\frac{a}{b}=1+\frac{p}{100}
$$

Why Does This Approximation Work?

Take two numbers $a>b>0$. The percentage difference between a and b is

$$
p=100\left(\frac{a-b}{b}\right)
$$

We can rewrite this as

$$
\frac{a}{b}=1+\frac{p}{100}
$$

Taking natural logs

$$
\log (a)-\log (b)=\log \left(1+\frac{p}{100}\right)
$$

Why Does This Approximation Work?

Take two numbers $a>b>0$. The percentage difference between a and b is

$$
p=100\left(\frac{a-b}{b}\right)
$$

We can rewrite this as

$$
\frac{a}{b}=1+\frac{p}{100}
$$

Taking natural logs

$$
\log (a)-\log (b)=\log \left(1+\frac{p}{100}\right)
$$

Applying our approximation and multiplying by 100 we find,

$$
p \approx 100(\log (a)-\log (b))
$$

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Log approximation is inaccurate for large changes like going from $X=0$ to $X=1$.

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Log approximation is inaccurate for large changes like going from $X=0$ to $X=1$. Instead the percent change in Y when X goes from 0 to 1 needs to be computed using:

$$
100\left(Y_{X=1}-Y_{X=0}\right) / Y_{X=0}=100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right)
$$

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Log approximation is inaccurate for large changes like going from $X=0$ to $X=1$. Instead the percent change in Y when X goes from 0 to 1 needs to be computed using:

$$
\begin{aligned}
100\left(Y_{X=1}-Y_{X=0}\right) / Y_{X=0} & =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right)
\end{aligned}
$$

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Log approximation is inaccurate for large changes like going from $X=0$ to $X=1$. Instead the percent change in Y when X goes from 0 to 1 needs to be computed using:

$$
\begin{aligned}
100\left(Y_{X=1}-Y_{X=0}\right) / Y_{X=0} & =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\exp \left(\beta_{1}\right)-1\right)
\end{aligned}
$$

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Log approximation is inaccurate for large changes like going from $X=0$ to $X=1$. Instead the percent change in Y when X goes from 0 to 1 needs to be computed using:

$$
\begin{aligned}
100\left(Y_{X=1}-Y_{X=0}\right) / Y_{X=0} & =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\exp \left(\beta_{1}\right)-1\right)
\end{aligned}
$$

Recall: $\log \left(Y_{X=1}\right)-\log \left(Y_{X=0}\right)=\log \left(Y_{X=1} / Y_{X=0}\right)=\beta_{1}$.

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Log approximation is inaccurate for large changes like going from $X=0$ to $X=1$. Instead the percent change in Y when X goes from 0 to 1 needs to be computed using:

$$
\begin{aligned}
100\left(Y_{X=1}-Y_{X=0}\right) / Y_{X=0} & =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\exp \left(\beta_{1}\right)-1\right)
\end{aligned}
$$

Recall: $\log \left(Y_{X=1}\right)-\log \left(Y_{X=0}\right)=\log \left(Y_{X=1} / Y_{X=0}\right)=\beta_{1}$.

Be Careful: Log-Level with binary X

Assume we have: $\log (Y)=\beta_{0}+\beta_{1} X$ where X is binary with values 1 or 0 . Assume $\beta_{1}>.2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_{1} \cdot 100$ percent change in Y ?

Log approximation is inaccurate for large changes like going from $X=0$ to $X=1$. Instead the percent change in Y when X goes from 0 to 1 needs to be computed using:

$$
\begin{aligned}
100\left(Y_{X=1}-Y_{X=0}\right) / Y_{X=0} & =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\left(Y_{X=1} / Y_{X=0}\right)-1\right) \\
& =100\left(\exp \left(\beta_{1}\right)-1\right)
\end{aligned}
$$

Recall: $\log \left(Y_{X=1}\right)-\log \left(Y_{X=0}\right)=\log \left(Y_{X=1} / Y_{X=0}\right)=\beta_{1}$.
A one unit change in X (ie. going from 0 to 1) is associated with a $100\left(\exp \left(\beta_{1}\right)-1\right)$ percent increase in Y.

Interpreting a Logged Outcome

Interpreting a Logged Outcome

- On the last few slides, there was a bit that was a little dodgy.

Interpreting a Logged Outcome

- On the last few slides, there was a bit that was a little dodgy.
- When we log the outcome, we are no longer approximating $E[Y \mid X]$ we are approximating $E[\log (Y) \mid X]$.

Interpreting a Logged Outcome

- On the last few slides, there was a bit that was a little dodgy.
- When we log the outcome, we are no longer approximating $E[Y \mid X]$ we are approximating $E[\log (Y) \mid X]$.
- Jensen's inequality gives us information on this relation: $f(E[X]) \leq E[f(X)]$ for any convex function $f()$.

Interpreting a Logged Outcome

- On the last few slides, there was a bit that was a little dodgy.
- When we log the outcome, we are no longer approximating $E[Y \mid X]$ we are approximating $E[\log (Y) \mid X]$.
- Jensen's inequality gives us information on this relation: $f(E[X]) \leq E[f(X)]$ for any convex function $f()$.
- In practice, this means we are no longer characterizing the expectation of Y and it is technically innaccurate to talk about Y 'on average' changing in a certain way.

Interpreting a Logged Outcome

- On the last few slides, there was a bit that was a little dodgy.
- When we log the outcome, we are no longer approximating $E[Y \mid X]$ we are approximating $E[\log (Y) \mid X]$.
- Jensen's inequality gives us information on this relation: $f(E[X]) \leq E[f(X)]$ for any convex function $f()$.
- In practice, this means we are no longer characterizing the expectation of Y and it is technically innaccurate to talk about Y 'on average' changing in a certain way.
- What are we characterizing? The geometric mean.

Geometric Mean

$$
\exp (E(\log (Y)))=\exp \left(\frac{1}{N} \sum_{i=1}^{N} \log \left(Y_{i}\right)\right)
$$

Geometric Mean

$$
\begin{aligned}
\exp (E(\log (Y))) & =\exp \left(\frac{1}{N} \sum_{i=1}^{N} \log \left(Y_{i}\right)\right) \\
& =\exp \left(\frac{1}{N} \log \left(\prod_{i=1}^{N} Y_{i}\right)\right)
\end{aligned}
$$

Geometric Mean

$$
\begin{aligned}
\exp (E(\log (Y))) & =\exp \left(\frac{1}{N} \sum_{i=1}^{N} \log \left(Y_{i}\right)\right) \\
& =\exp \left(\frac{1}{N} \log \left(\prod_{i=1}^{N} Y_{i}\right)\right) \\
& =\exp \left(\log \left(\left(\prod_{i=1}^{N} Y_{i}\right)^{\frac{1}{N}}\right)\right)
\end{aligned}
$$

Geometric Mean

$$
\begin{aligned}
\exp (E \log (Y))) & =\exp \left(\frac{1}{N} \sum_{i=1}^{N} \log \left(Y_{i}\right)\right) \\
& =\exp \left(\frac{1}{N}{ }^{\frac{1}{\operatorname{oog}}\left(\prod_{i=1}^{N} r_{i}\right)}\right) \\
& =\exp \left(\log \left(\left(\prod_{i=1}^{N} r_{i} r^{\frac{j}{n}}\right)\right)\right. \\
& =\left(\prod_{i=1}^{N} r_{i} r^{\frac{1}{n}}\right)
\end{aligned}
$$

Geometric Mean

$$
\begin{aligned}
\exp (E(\log (Y))) & =\exp \left(\frac{1}{N} \sum_{i=1}^{N} \log \left(Y_{i}\right)\right) \\
& =\exp \left(\frac{1}{N} \log \left(\prod_{i=1}^{N} Y_{i}\right)\right) \\
& =\exp \left(\log \left(\left(\prod_{i=1}^{N} Y_{i}\right)^{\frac{1}{N}}\right)\right) \\
& =\left(\prod_{i=1}^{N} Y_{i}\right)^{\frac{1}{N}} \\
& =\text { Geometric } \operatorname{Mean}(Y)
\end{aligned}
$$

Geometric Mean

$$
\begin{aligned}
\exp (E(\log (Y))) & =\exp \left(\frac{1}{N} \sum_{i=1}^{N} \log \left(Y_{i}\right)\right) \\
& =\exp \left(\frac{1}{N} \log \left(\prod_{i=1}^{N} Y_{i}\right)\right) \\
& =\exp \left(\log \left(\left(\prod_{i=1}^{N} Y_{i}\right)^{\frac{1}{N}}\right)\right) \\
& =\left(\prod_{i=1}^{N} Y_{i}\right)^{\frac{1}{N}} \\
& =\text { Geometric Mean }(Y)
\end{aligned}
$$

The geometric mean is a robust measure of central tendency.

Application

THE INTERGENERATIONAL ELASTICITY OF WHAT? THE CASE FOR REDEFINING THE WORKHORSE MEASURE OF ECONOMIC MOBILITY

Pablo A. Mitnik* ${ }^{*}$
David B. Grusky*

Abstract

The intergenerational elasticity (IGE) has been assumed to refer to the expectation of children's income when in fact it pertains to the geometric mean of children's income. We show that mobility analyses based on the conventional IGE have been widely misinterpreted, are subject to selection bias, and cannot disentangle the different channels for transmitting economic status across generations. The solution to these problems-estimating the IGE of expected income or earnings-returns the field to what it has long meant to estimate. Under this approach, intergenerational persistence is found to be substantially higher, thus raising the possibility that the field's stock results are misleading.

Keywords

intergenerational economic mobility, elasticity of expected income, selection bias, gender, marriage and economic mobility

Core Idea

Classic approach :

Core Idea

Classic approach :

MG proposal :

Geometric Mean is Closer to the Median Than the Mean

Our Response

COMMENT: SUMMARIZING INCOME MOBILITY WITH MULTIPLE SMOOTH QUANTILES INSTEAD OF PARAMETERIZED MEANS

Ian Lundberg*
Brandon M. Stewart*
*Department of Sociology and Office of Population Research, Princeton University, Princeton, NJ, USA
Corresponding Author: Ian Lundberg, ilundberg@princeton.edu
DOI: 10.1177/0081175020931126

Single-number summaries that capture the relationship of socioeconomic outcomes across generations are a cornerstone of economic mobility research. Studies often focus on the intergenerational elasticity (IGE) of income: the coefficient β_{1} on parent log income in a model predicting offspring \log income (e.g., Aaronson and Mazumder 2008; Björklund and Jäntti 1997; Solon 2004). A large β_{1} is often interpreted as evidence that incomes persist to a substantial degree across generations.

Images from this section are from this paper or earlier drafts of it.

Two Implicit Choices

Two Implicit Choices

(1) Summary Statistics for the Conditional Distribution

Two Implicit Choices

(1) Summary Statistics for the Conditional Distribution
and
(2) Assume or Learn a Functional Form

Two Implicit Choices

(1) Summary Statistics for the Conditional Distribution (gets you down to one number per value of x)
and
(2) Assume or Learn a Functional Form

Two Implicit Choices

(1) Summary Statistics for the Conditional Distribution (gets you down to one number per value of x)
and
(2) Assume or Learn a Functional Form
(potentially simplifies the set of summary statistics to a single number)

Visualizing the MG Proposal

Visualizing the MG Proposal

Single Summary Statistics Necessarily Mask Information

Single Summary Statistics Necessarily Mask Information

The Mean is a Normative Choice

The Mean is a Normative Choice

A New Proposal

A New Proposal

Single Number Summaries

Single Number Summaries

- A key selling point of the conventional IGE, the MG proposal and regression more broadly is the single-number summary.

Single Number Summaries

- A key selling point of the conventional IGE, the MG proposal and regression more broadly is the single-number summary.
- Any such summary necessitates a loss of information.

Single Number Summaries

- A key selling point of the conventional IGE, the MG proposal and regression more broadly is the single-number summary.
- Any such summary necessitates a loss of information.
- Even with more complex functional forms, we can always calculate such a summary. For instance here, median is (on average) $\$ 4 \mathrm{k}$ higher when parent income is $\$ 10 \mathrm{k}$ higher.

Single Number Summaries

- A key selling point of the conventional IGE, the MG proposal and regression more broadly is the single-number summary.
- Any such summary necessitates a loss of information.
- Even with more complex functional forms, we can always calculate such a summary. For instance here, median is (on average) $\$ 4 \mathrm{k}$ higher when parent income is $\$ 10 \mathrm{k}$ higher.
- We obtain this by simply plugging in the 50th percentile at each offspring income, adding $\$ 10 \mathrm{k}$ to each parent income and taking the average.

Single Number Summaries

- A key selling point of the conventional IGE, the MG proposal and regression more broadly is the single-number summary.
- Any such summary necessitates a loss of information.
- Even with more complex functional forms, we can always calculate such a summary. For instance here, median is (on average) $\$ 4 \mathrm{k}$ higher when parent income is $\$ 10 \mathrm{k}$ higher.
- We obtain this by simply plugging in the 50th percentile at each offspring income, adding $\$ 10 \mathrm{k}$ to each parent income and taking the average.
- If you are willing to commit to a quantity of interest, you can usually estimate it directly.

Single Number Summaries

- A key selling point of the conventional IGE, the MG proposal and regression more broadly is the single-number summary.
- Any such summary necessitates a loss of information.
- Even with more complex functional forms, we can always calculate such a summary. For instance here, median is (on average) $\$ 4 \mathrm{k}$ higher when parent income is $\$ 10 \mathrm{k}$ higher.
- We obtain this by simply plugging in the 50th percentile at each offspring income, adding $\$ 10 \mathrm{k}$ to each parent income and taking the average.
- If you are willing to commit to a quantity of interest, you can usually estimate it directly.
- At their best, single-number summaries are a way that the reader can calculate any approximation to a variety of quantities they are interested in. At their worst, they are a way for authors to abdicate responsibility for choosing a clear quantity of interest.

Broader Implications (Lee, Lundberg and Stewart)

Traditional Approach to Visualize Covid-19 Death Rates in US Counties
Covid data from NYTimes github as of 2020/09/07
Demographic data from American Community Survey 2014-2018 5-year estimate

Broader Implications (Lee, Lundberg and Stewart)

Covid-19 Death Rates in US Counties

Covid data from NYTimes github as of 2020/09/07
Demographic data from American Community Survey 2014-2018 5-year estimate

(1) Mechanics of OLS
(2) Classical Perspective (Part 1, Unbiasedness)

- Sampling Distributions
- Classical Assumptions 1-4
(3) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

(1) Mechanics of OLS

(2) Classical Perspective (Part 1, Unbiasedness)

- Sampling Distributions
- Classical Assumptions 1-4
(B) Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective
(4) Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation
(5) Non-linearities
- Log Transformations
- Fun With Logs
- LOESS

So what is ggplot2 doing?

LOESS

LOESS

- We can combine the nonparametric kernel method idea of using only local data with a parametric model

LOESS

- We can combine the nonparametric kernel method idea of using only local data with a parametric model
- Idea: fit a linear regression within each band

LOESS

- We can combine the nonparametric kernel method idea of using only local data with a parametric model
- Idea: fit a linear regression within each band
- Locally weighted scatterplot smoothing (LOWESS or LOESS):

LOESS

- We can combine the nonparametric kernel method idea of using only local data with a parametric model
- Idea: fit a linear regression within each band
- Locally weighted scatterplot smoothing (LOWESS or LOESS):
(1) Pick a subset of the data that falls in the interval $[x-h, x+h]$

LOESS

- We can combine the nonparametric kernel method idea of using only local data with a parametric model
- Idea: fit a linear regression within each band
- Locally weighted scatterplot smoothing (LOWESS or LOESS):
(1) Pick a subset of the data that falls in the interval $[x-h, x+h]$
(2) Fit a line to this subset of the data (= local linear regression), weighting the points by their distance to x using a kernel function

LOESS

- We can combine the nonparametric kernel method idea of using only local data with a parametric model
- Idea: fit a linear regression within each band
- Locally weighted scatterplot smoothing (LOWESS or LOESS):
(1) Pick a subset of the data that falls in the interval $[x-h, x+h]$
(2) Fit a line to this subset of the data (= local linear regression), weighting the points by their distance to x using a kernel function
(3) Use the fitted regression line to predict the expected value of $E\left[Y \mid X=x_{0}\right]$

LOESS Example

Uniform Kernel Regression Estimation

LOESS Example

Uniform Kernel Regression Estimation

LOESS Example

Uniform Kernel Regression Estimation

LOESS Example

Uniform Kernel Regression Estimation

LOESS Example

Uniform Kernel Regression Estimation

LOESS Example

Gaussian Kernel Regression Estimation

We Covered

We Covered

- Interpretation with logged independent and dependent variables
- The geometric mean!

This Week in Review

- OLS!
- Classical regression assumptions!
- Inference!
- Logs!

This Week in Review

- OLS!
- Classical regression assumptions!
- Inference!
- Logs!

Going Deeper:

Aronow and Miller (2019) Foundations of Agnostic Statistics.
Cambridge University Press. Chapter 4.

This Week in Review

- OLS!
- Classical regression assumptions!
- Inference!
- Logs!

Going Deeper:

Aronow and Miller (2019) Foundations of Agnostic Statistics.
Cambridge University Press. Chapter 4.

Next week: Linear Regression with Two Variables!

[^0]: ${ }^{1}$ These slides are heavily influenced by Matt Blackwell, Adam Glynn, Erin Hartman and Jens Hainmueller. Illustrations by Shay O'Brien.

