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Where We’ve Been and Where We’re Going...

Last Week
I hypothesis testing
I what is regression

This Week
I mechanics and properties of simple linear regression
I inference and measures of model fit
I confidence intervals for regression
I goodness of fit

Next Week
I mechanics with two regressors
I omitted variables, multicollinearity

Long Run
I probability → inference → regression → causal inference
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Macrostructure—This Semester

The next few weeks,

Linear Regression with Two Regressors

Break Week and Multiple Linear Regression

Rethinking Regression

Regression in the Social Sciences

Causality with Measured Confounding

Unmeasured Confounding and Instrumental Variables

Repeated Observations and Panel Data

Review and Final Discussion
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1 Mechanics of OLS

2 Classical Perspective (Part 1, Unbiasedness)
Sampling Distributions
Classical Assumptions 1–4

3 Classical Perspective: Variance
Sampling Variance
Gauss-Markov
Large Samples
Small Samples
Agnostic Perspective

4 Inference
Hypothesis Tests
Confidence Intervals
Goodness of fit
Interpretation

5 Non-linearities
Log Transformations
Fun With Logs
LOESS
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Narrow Goal: Understand lm() Output

Call:

lm(formula = sr ~ pop15, data = LifeCycleSavings)

Residuals:

Min 1Q Median 3Q Max

-8.637 -2.374 0.349 2.022 11.155

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.49660 2.27972 7.675 6.85e-10 ***

pop15 -0.22302 0.06291 -3.545 0.000887 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.03 on 48 degrees of freedom

Multiple R-squared: 0.2075,Adjusted R-squared: 0.191

F-statistic: 12.57 on 1 and 48 DF, p-value: 0.0008866
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Reminder
How do we fit the regression line Ŷ = β̂0 + β̂1X to the data?
Answer: We will minimize the squared sum of residuals
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The Population Quantity
Broadly speaking we are interested in the conditional expectation function
(CEF) in part because it minimizes the mean squared error.

The CEF has a potentially arbitrary shape but there is always a best linear
predictor (BLP) or linear projection which is the line given by:

g(X ) = β0 + β1X

β0 = E [Y ]− Cov[X ,Y ]

V [X ]
E [X ]

β1 =
Cov[X ,Y ]

V [X ]

This may not be a good approximation depending on how non-linear the true
CEF is. However, it provides us with a reasonable target that always exists.

Define deviations from the BLP as

u = Y − g(X )

then, the following properties hold:
(1) E [u] = 0, (2) E [Xu] = 0, (3) Cov[X , u] = 0
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What is OLS?
The best linear predictor is the line that minimizes

(β0, β1) = arg min
b0,b1

E [(Y − b0 − b1X )2]

Ordinary Least Squares (OLS) is a method for minimizing the sample
analog of this quantity. It solves the optimization problem:

(β̂0, β̂1) = arg min
b0,b1

n∑
i=1

(Yi − b0 − b1Xi )
2

In words, the OLS estimates are the intercept and slope that minimize
the sum of the squared residuals.

There are many loss functions, but OLS uses the squared error loss
which is connected to the conditional expectation function. If we
chose a different loss, we would target a different feature of the
conditional distribution.
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Deriving the OLS estimator

Let’s think about n pairs of sample observations:
(Y1,X1), (Y2,X2), . . . , (Yn,Xn)

Let {b0, b1} be possible values for {β0, β1}
Define the least squares objective function:

S(b0, b1) =
n∑

i=1

(Yi − b0 − b1Xi )
2.

How do we derive the LS estimators for β0 and β1? We want to
minimize this function, which is actually a very well-defined calculus
problem.

1 Take partial derivatives of S with respect to b0 and b1.
2 Set each of the partial derivatives to 0
3 Solve for {b0, b1} and replace them with the solutions

We are going to step through this process together.
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Step 1: Take Partial Derivatives

S(b0, b1) =
n∑

i=1

(Yi − b0 − Xib1)2

=
n∑

i=1

(Y 2
i − 2Yib0 − 2Yib1Xi + b2

0 + 2b0b1Xi + b2
1X

2
i )

∂S(b0, b1)

∂b0
=

n∑
i=1

(−2Yi + 2b0 + 2b1Xi )

= −2
n∑

i=1

(Yi − b0 − b1Xi )

∂S(b0, b1)

∂b1
=

n∑
i=1

(−2YiXi + 2b0Xi + 2b1X
2
i )

= −2
n∑

i=1

Xi (Yi − b0 − b1Xi )
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Solving for the Intercept

∂S(b0, b1)

∂b0
= −2

n∑
i=1

(Yi − b0 − b1Xi )

0 = −2
n∑

i=1

(Yi − b0 − b1Xi )

0 =
n∑

i=1

(Yi − b0 − b1Xi )

0 =
n∑

i=1

Yi −
n∑

i=1

b0 −
n∑

i=1

b1Xi

b0n =

(
n∑

i=1

Yi

)
− b1

(
n∑

i=1

Xi

)
b0 = Y − b1X
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A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.

Lemma (Deviations from the Mean Sum to 0)

n∑
i=1

(Xi − X̄ ) =

(
n∑

i=1

Xi

)
− nX̄

=

(
n∑

i=1

Xi

)
− n

n∑
i=1

Xi/n

=

(
n∑

i=1

Xi

)
−

n∑
i=1

Xi

= 0
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Solving for the Slope

0 = −2
n∑

i=1

Xi (Yi − b0 − b1Xi )

0 =
n∑

i=1

Xi (Yi − b0 − b1Xi )

0 =
n∑

i=1

Xi (Yi − (Y − b1X )− b1Xi ) (sub in b0)

0 =
n∑

i=1

Xi (Yi − Y − b1(Xi − X ))

0 =
n∑

i=1

Xi (Yi − Y )− b1

n∑
i=1

Xi (Xi − X )

b1

n∑
i=1

Xi (Xi − X ) =
n∑

i=1

Xi (Yi − Y )− X
∑
i=1

(Yi − Y ) (add 0)
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Solving for the Slope

b1

n∑
i=1

Xi (Xi − X ) =
n∑

i=1

Xi (Yi − Y )− X
∑
i=1

(Yi − Y )

b1

n∑
i=1

Xi (Xi − X ) =
n∑

i=1

Xi (Yi − Y )−
∑
i=1

X (Yi − Y )

b1

(
n∑

i=1

Xi (Xi − X )−
∑
i=1

X (Xi − X )

)
=

n∑
i=1

(Xi − X )(Yi − Y ) add 0

b1

n∑
i=1

(Xi − X )(Xi − X ) =
n∑

i=1

(Xi − X )(Yi − Y )

b1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
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The OLS estimator

Now we’re done! Here are the OLS estimators:

β̂0 = Y − β̂1X

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

Stewart (Princeton) Week 5: Simple Linear Regression September 28-October 2, 2020 15 / 127



Intuition of the OLS estimator
The intercept equation tells us that the regression line goes through
the point (Y ,X ):

Y = β̂0 + β̂1X

The slope for the regression line can be written as the following:

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
=

Sample Covariance between X and Y

Sample Variance of X

The higher the covariance between X and Y , the higher the slope will
be.

Negative covariances → negative slopes;
positive covariances → positive slopes

If Xi doesn’t vary, the denominator is undefined.

If Yi doesn’t vary, you get a flat line.
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Mechanical properties of OLS
Later we’ll see that under certain assumptions, OLS will have nice
statistical properties.

But some properties are mechanical since they can be derived from
the first order conditions of OLS.

1 The sample mean of the residuals will be zero:

1

n

n∑
i=1

ûi = 0

2 The residuals will be uncorrelated with the predictor
(Ĉov is the sample covariance):

n∑
i=1

Xi ûi = 0 =⇒ Ĉov(Xi , ûi ) = 0

3 The residuals will be uncorrelated with the fitted values:
n∑

i=1

Ŷi ûi = 0 =⇒ Ĉov(Ŷi , ûi ) = 0
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OLS slope as a weighted sum of the outcomes

One useful derivation is to write the OLS estimator for the slope as a
weighted sum of the outcomes.

β̂1 =
n∑

i=1

WiYi

Where here we have the weights, Wi as:

Wi =
(Xi − X )∑n
i=1(Xi − X )2

This is important for two reasons. First, it’ll make derivations later
much easier. And second, it shows that is just the sum of a random
variable. Therefore it is also a random variable.
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Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

=

∑n
i=1(Xi − X )Yi∑n
i=1(Xi − X )2

−
∑n

i=1(Xi − X )Y∑n
i=1(Xi − X )2

=

∑n
i=1(Xi − X )Yi∑n
i=1(Xi − X )2

=
n∑

i=1

WiYi

Where the weights, Wi are:

Wi =
(Xi − X )∑n
i=1(Xi − X )2
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We Covered

A brief review of regression

Derivation of the OLS estimator

OLS as a weighted sum of outcomes

Next Time: The Classical Perspective
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Where We’ve Been and Where We’re Going...

Last Week
I hypothesis testing
I what is regression

This Week
I mechanics and properties of simple linear regression
I inference and measures of model fit
I confidence intervals for regression
I goodness of fit

Next Week
I mechanics with two regressors
I omitted variables, multicollinearity

Long Run
I probability → inference → regression → causal inference
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1 Mechanics of OLS

2 Classical Perspective (Part 1, Unbiasedness)
Sampling Distributions
Classical Assumptions 1–4

3 Classical Perspective: Variance
Sampling Variance
Gauss-Markov
Large Samples
Small Samples
Agnostic Perspective

4 Inference
Hypothesis Tests
Confidence Intervals
Goodness of fit
Interpretation

5 Non-linearities
Log Transformations
Fun With Logs
LOESS
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Sampling distribution of the OLS estimator
Remember: OLS is an estimator—it’s a machine that we plug
samples into and we get out estimates.

OLS

Sample 1: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)1

Sample 2: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)2

...
...

Sample k − 1: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)k−1

Sample k: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)k

Just like the sample mean, sample difference in means, or the sample
variance

It has a sampling distribution, with a sampling variance/standard
error, etc.

Let’s take a simulation approach to demonstrate:
I Let’s use some data from Acemoglu, Daron, Simon Johnson, and

James A. Robinson. “The colonial origins of comparative development:
An empirical investigation.” 2000

I See how the line varies from sample to sample
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Simulation procedure

1 Draw a random sample of size n = 30 with replacement using
sample()

2 Use lm() to calculate the OLS estimates of the slope and intercept
3 Plot the estimated regression line
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Population Regression
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Randomly sample from AJR
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Sampling distribution of OLS

You can see that the estimated slopes and intercepts vary from sample
to sample, but that the “average” of the lines looks about right.

Sampling distribution of intercepts

β̂0

Fr
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The Sampling Distribution is a Joint Distribution!

While both the intercept and the slope vary, they vary together.

−1.2

−0.8

−0.4

0.0

8 10 12 14

β̂0

β̂ 1
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Sample Mean Properties Review

In the last few weeks we derived the properties of the sampling
distribution for the sample mean, X̄n.

Under essentially only the iid assumption (plus finite mean and
variance) we derived the large sample distribution as

X̄n ∼ N
(
µ,
σ2

n

)
I This means the estimator is unbiased for the population mean:

E [X̄n] = µ.
I has sampling variance: σ2/n
I and standard error: σ/

√
n

This in turn gave us confidence intervals and hypothesis tests.

We will use the same strategy here!
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Our goal

What is the sampling distribution of the OLS slope?

β̂1 ∼?(?, ?)

We need fill in those ?s.

We’ll start with the mean of the sampling distribution. Is the
estimator centered at the true value, β1?
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Classical Model: OLS Assumptions Preview

1 Linearity in Parameters: The population model is linear in its
parameters and correctly specified

2 Random Sampling: The observed data represent a random sample
from the population described by the model.

3 Variation in X : There is variation in the explanatory variable.

4 Zero conditional mean: Expected value of the error term is zero
conditional on all values of the explanatory variable

5 Homoskedasticity: The error term has the same variance conditional
on all values of the explanatory variable.

6 Normality: The error term is independent of the explanatory variables
and normally distributed.
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Hierarchy of OLS Assumptions
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OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly
specified as:

Yi = β0 + β1Xi + ui

Note that it can be nonlinear in variables
I OK: Yi = β0 + β1Xi + ui or

Yi = β0 + β1X
2
i + ui or

Yi = β0 + β1log(Xi ) + u
I Not OK: Yi = β0 + β2

1Xi + ui or
Yi = β0 + exp(β1)Xi + ui

β0, β1: Population parameters — fixed and unknown

ui : Unobserved random variable with E [ui ] = 0 — captures all other
factors influencing Yi other than Xi

We assume this to be the structural model, i.e., the model describing
the true process generating Yi
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OLS Assumption II

Assumption (II. Random Sampling)

The observed data:
(yi , xi ) for i = 1, ..., n

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

A cross-sectional survey where the units are sampled randomly

Potential Violations:

Time series data (regressor values may exhibit persistence)

Sample selection problems (sample not representative of the
population)
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OLS Assumption III

Assumption (III. Variation in X ; a.k.a. No Perfect Collinearity)

The observed data:
xi for i = 1, ..., n

are not all the same value.

Satisfied as long as there is some variation in the regressor X in the
sample.

Why do we need this?

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

This assumption is needed just to calculate β̂.

Only assumption needed for using OLS as a pure data summary.
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Stuck in a moment

Why does this matter? How would you draw the line of best fit
through this scatterplot, which is a violation of this assumption?
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OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the
explanatory variable:

E [ui |Xi = x ] = 0

E [ui |X ] = 0 implies a slightly weaker condition Cov(X , u) = 0

Given random sampling, E [u|X ] = 0 also implies E [ui |xi ] = 0 for all i
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Violating the zero conditional mean assumption
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Violating the zero conditional mean assumption
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Unbiasedness

With Assumptions 1-4, we can show that the OLS estimator for the slope
is unbiased, that is E [β̂1] = β1.

Let’s prove it!
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Lemma 3: Weighted Combinations of Xi

Lemma (
∑

i WiXi = 1)

n∑
i=1

WiXi =
n∑

i=1

Xi (Xi − X )∑n
j=1(Xj − X )2

=
1∑n

j=1(Xj − X )2

n∑
i=1

Xi (Xi − X )

=
1∑n

j=1(Xj − X )2

[
n∑

i=1

Xi (Xi − X )−
n∑

i=1

X (Xi − X )

]

=
1∑n

j=1(Xj − X )2

n∑
i=1

(Xi − X )(Xi − X )

= 1
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Lemma 4: Estimation Error

Lemma

β̂1 =
n∑

i=1

WiYi

=
n∑

i=1

Wi (β0 + β1Xi + ui )

= β0

(
n∑

i=1

Wi

)
+ β1

(
n∑

i=1

WiXi

)
+

n∑
i=1

Wiui

= β1 +
n∑

i=1

Wiui

β̂1 − β1 =
n∑

i=1

Wiui
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Unbiasedness Proof

E [β̂1 − β1|X ] = E

[
n∑

i=1

Wiui |X

]

=
n∑

i=1

E [Wiui |X ]

=
∑
i=1

WiE [ui |X ]

=
∑
i=1

Wi0

= 0

Using iterated expectations we can show that it is also unconditionally
biased E [β̂1] = E [E [β̂1|X ]] = E [β1] = β1.
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Consistency

Recall the estimation error,

β̂1 = β1 +
n∑

i=1

Wiui

Under iid sampling we have

n∑
i=1

Wiui =

∑n
i=1(Xi − X )ui∑n
i=1(Xi − X )

p→ Cov[Xi , ui ]

V [Xi ]

Under A4 (zero conditional mean error) we have the slightly weaker
property Cov [Xi , ui ] = 0 so as long as V [X ] > 0, then we have,

β̂1
p→ β1
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We Covered

The first four assumptions of the classical model

We showed that these four were sufficient to establish unbiasedness
and consistency.

We even proved it to ourselves!

Next Time: The Classical Perspective Part 2: Variance.
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Where We’ve Been and Where We’re Going...

Last Week
I hypothesis testing
I what is regression

This Week
I mechanics and properties of simple linear regression
I inference and measures of model fit
I confidence intervals for regression
I goodness of fit

Next Week
I mechanics with two regressors
I omitted variables, multicollinearity

Long Run
I probability → inference → regression → causal inference
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1 Mechanics of OLS

2 Classical Perspective (Part 1, Unbiasedness)
Sampling Distributions
Classical Assumptions 1–4

3 Classical Perspective: Variance
Sampling Variance
Gauss-Markov
Large Samples
Small Samples
Agnostic Perspective

4 Inference
Hypothesis Tests
Confidence Intervals
Goodness of fit
Interpretation

5 Non-linearities
Log Transformations
Fun With Logs
LOESS
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Where are we?

Now we know that, under Assumptions 1-4, we know that

β̂1 ∼?(β1, ?)

That is we know that the sampling distribution is centered on the
true population slope, but we don’t know the population variance.
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Sampling variance of estimated slope

In order to derive the sampling variance of the OLS estimator,

1 Linearity
2 Random (iid) sample
3 Variation in Xi

4 Zero conditional mean of the errors
5 Homoskedasticity
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Variance of OLS Estimators
How can we derive Var[β̂0] and Var[β̂1]? Let’s make the following additional
assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a
function of the explanatory variable:

Var[u|X ] = σ2
u

This implies Var[u] = σ2
u

→ all errors have an identical error variance (σ2
ui = σ2

u for all i)

Taken together, Assumptions I–V imply:

E [Y |X ] = β0 + β1X

Var[Y |X ] = σ2
u

Violation: Var[u|X = x1] 6= Var[u|X = x2] called heteroskedasticity.

Assumptions I–V are collectively known as the Gauss-Markov assumptions
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Heteroskedasticity
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Deriving the sampling variance

V [β̂1|X ] =??

V [β̂1|X ] = V

[
n∑

i=1

Wiui

∣∣∣X]

=
n∑

i=1

W 2
i V [ui |X ] (A2: iid)

=
n∑

i=1

W 2
i σ

2
u (A5: homoskedastic)

= σ2
u

n∑
i=1

(
(Xi − X )∑n

i ′=1(Xi ′ − X )2

)2

=
σ2
u∑n

i=1(Xi − X )2
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Variance of OLS Estimators

Theorem (Variance of OLS Estimators)

Given OLS Assumptions I–V (Gauss-Markov Assumptions):

V [β̂1 | X ] =
σ2
u∑n

i=1(xi − x̄)2

V [β̂0 | X ] = σ2
u

{
1

n
+

x̄2∑n
i=1(xi − x̄)2

}
where V [u | X ] = σ2

u (the error variance).
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Understanding the sampling variance

V [β̂1|X1, . . . ,Xn] =
σ2
u∑n

i=1(Xi − X )2

What drives the sampling variability of the OLS estimator?
I The higher the variance of Yi |Xi , the higher the sampling variance
I The lower the variance of Xi , the higher the sampling variance
I As we increase n, the denominator gets large, while the numerator is

fixed and so the sampling variance shrinks to 0.
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Variance in X Reduces Standard Errors
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Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance Var [u] = σ2
u?

We can derive an estimator based on the residuals:

ûi = yi − ŷi = yi − β̂0 − β̂1xi

Recall: The errors ui are NOT the same as the residuals ûi .

Intuitively, the scatter of the residuals around the fitted regression line should
reflect the unseen scatter about the true population regression line.

We can measure scatter with the mean squared deviation:

MSD(û) ≡ 1

n

n∑
i=1

(ûi − ¯̂u)2 =
1

n

n∑
i=1

û2
i
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Estimating the Variance of OLS Estimators

By construction, the regression line is closer since it is drawn to fit the
sample we observe

Specifically, the regression line is drawn so as to minimize the sum of the
squares of the distances between it and the observations

So the spread of the residuals MSD(û) will slightly underestimate the error
variance Var[u] = σ2

u on average

In fact, we can show that with a single regressor X we have:

E [MSD(û)] =
n − 2

n
σ2
u (degrees of freedom adjustment)

Thus, an unbiased estimator for the error variance is:

σ̂2
u =

n

n − 2
MSD(û) =

n

n − 2

1

n

n∑
i=1

ûi =
1

n − 2

n∑
i=1

û2
i

We plug this estimate into the variance estimators for β̂0 and β̂1.
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Where are we?

Under Assumptions 1-5, we know that

β̂1 ∼?

(
β1,

σ2
u∑n

i=1(Xi − X )2

)
Now we know the mean and sampling variance of the sampling
distribution.

How does this compare to other estimators for the population slope?
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Where are we?
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OLS is BLUE :(

Theorem (Gauss-Markov)

Given OLS Assumptions I–V, the OLS estimator is BLUE, i.e. the

1 Best: Lowest variance in class

2 Linear: Among Linear estimators

3 Unbiased: Among Linear Unbiased estimators

4 Estimator.

A linear estimator is one that can be written as β̂ = Wy

Assumptions 1-5 are called the “Gauss Markov Assumptions”

Result fails to hold when the assumptions are violated!
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Gauss-Markov Theorem

Regression Analysis Tutorial 70

Econometrics Laboratory � University of California at Berkeley � 22-26 March 1999

All estimators

unbiased

linear

Gauss-Markov Theorem

OLS is efficient in the class of unbiased, linear estimators.

OLS is BLUE--best linear unbiased estimator.

Stewart (Princeton) Week 5: Simple Linear Regression September 28-October 2, 2020 61 / 127



Where are we?

Under Assumptions 1-5, we know that

β̂1 ∼?

(
β1,

σ2
u∑n

i=1(Xi − X )2

)

And we know that σ2
u∑n

i=1(Xi−X )2 is the lowest variance of any linear

estimator of β1

What about the last question mark? What’s the form of the
distribution?
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Large-sample distribution of OLS estimators
Remember that the OLS estimator is the sum of independent r.v.’s:

β̂1 =
n∑

i=1

WiYi

Mantra of the Central Limit Theorem:
“the sums and means of random variables tend to be Normally
distributed in large samples.”

True here as well, so we know that in large samples:

β̂1 − β1

SE [β̂1]
∼ N(0, 1)

Can also replace SE with an estimate:

β̂1 − β1

ŜE [β̂1]
∼ N(0, 1)
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Where are we?

Under Assumptions 1-5 and in large samples, we know that

β̂1 ∼ N

(
β1,

σ2
u∑n

i=1(Xi − X )2

)
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Sampling distribution in small samples

What if we have a small sample? What can we do then?

Can’t get something for nothing, but we can make progress if we
make another assumption:

1 Linearity

2 Random (iid) sample

3 Variation in Xi

4 Zero conditional mean of the errors

5 Homoskedasticity

6 Errors are conditionally Normal
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OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, u⊥⊥X, and
is normally distributed with mean zero and variance σ2

u:

u ∼ N(0, σ2
u), which implies Y |X ∼ N(β0 + β1X , σ

2
u)

Note: This also implies homoskedasticity and zero conditional mean.

Together Assumptions I–VI are the classical linear model (CLM)
assumptions.

The CLM assumptions imply that OLS is BUE (i.e. minimum variance
among all linear or non-linear unbiased estimators)

Non-normality of the errors is a serious concern in small samples. We can
partially check this assumption by looking at the residuals (more in coming
weeks)

Variable transformations can help to come closer to normality

Reminder: we don’t need normality assumption in large samples

Stewart (Princeton) Week 5: Simple Linear Regression September 28-October 2, 2020 66 / 127



Sampling distribution of OLS slope

If we have Yi given Xi is distributed N(β0 + β1Xi , σ
2
u), then we have

the following at any sample size:

β̂1 − β1

SE [β̂1]
∼ N(0, 1)

Furthermore, if we replace the true standard error with the estimated
standard error, then we get the following:

β̂1 − β1

ŜE [β̂1]
∼ tn−2

The standardized coefficient follows a t distribution n − 2 degrees of
freedom. We take off an extra degree of freedom because we had to
estimate one more parameter than just the sample mean.

All of this depends on Normal errors!
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Where are we?

Under Assumptions 1-5 and in large samples, we know that

β̂1 ∼ N

(
β1,

σ2
u∑n

i=1(Xi − X )2

)

Under Assumptions 1-6 and in any sample, we know that

β̂1 − β1

ŜE [β̂1]
∼ tn−2
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Hierarchy of OLS Assumptions
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Regression as parametric modeling
Let’s summarize the parametric view we have taken thus far.

Gauss-Markov assumptions:

I (A1) linearity, (A2) i.i.d. sample, (A3) variation in X , (A4) zero
conditional mean error, (A5) homoskedasticity.

I basically, assume the model is right

 OLS is BLUE, plus (A6) normality of the errors and we get small sample
SEs and BUE.

What is the basic approach here?

I A1 defines a linear model for the outcome:

Yi = β0 + β1Xi + ui
I A2 and A4 let us write the CEF as function of Xi alone.

E [Yi |Xi ] = µi = β0 + β1Xi

I A5-6, define a probabilistic model for the conditional distribution:

Yi |Xi ∼ N (µi , σ
2)

I A3 covers the edge-case that the βs are indistinguishable.

Stewart (Princeton) Week 5: Simple Linear Regression September 28-October 2, 2020 70 / 127



Agnostic views on regression

These assumptions assume we know a lot about how Yi is ‘generated’.

Justifications for using OLS (like BLUE/BUE) often invoke these
assumptions which are unlikely to hold exactly.

Alternative: take an agnostic view on regression.
I use OLS without believing these assumptions.
I lean on two things: A2 i.i.d. sample, asymptotics (large-sample

properties)

Lose the distributional assumptions and focus on approximating the
best linear predictor.

If the true CEF happens to be linear, the best linear predictor is it.
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Unbiasedness Result

One of the results most people know is that OLS is unbiased, but
unbiased for what?

It is unbiased for the CEF under the assumption that the model is
correctly specified.

However, this could be a quite poor approximation to the true CEF if
there is a great deal of non-linearity.

We will often use OLS as a means to approximate the CEF, but don’t
forget that it is just an approximation!

We will return in a few weeks to how you diagnose this approximation.
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Pedagogical Note

For now we are going to move forward with the classical worldview
and we will return to some alternative approaches later in the semester
once we are comfortable with the matrix representation of regression.

This will lead to techniques like robust standard errors which don’t
rely on the assumptions of homoskedasticity (but have other
tradeoffs!)

For now, just remember that regression is a linear approximation to
the CEF!
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We Covered

Sampling Variance

Gauss Markov

Large Sample and Small Sample Properties

Next Time: Inference
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Where We’ve Been and Where We’re Going...

Last Week
I hypothesis testing
I what is regression

This Week
I mechanics and properties of simple linear regression
I inference and measures of model fit
I confidence intervals for regression
I goodness of fit

Next Week
I mechanics with two regressors
I omitted variables, multicollinearity

Long Run
I probability → inference → regression → causal inference
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1 Mechanics of OLS

2 Classical Perspective (Part 1, Unbiasedness)
Sampling Distributions
Classical Assumptions 1–4

3 Classical Perspective: Variance
Sampling Variance
Gauss-Markov
Large Samples
Small Samples
Agnostic Perspective

4 Inference
Hypothesis Tests
Confidence Intervals
Goodness of fit
Interpretation

5 Non-linearities
Log Transformations
Fun With Logs
LOESS
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Where are we?

Under Assumptions 1-5 and in large samples, we know that

β̂1 ∼ N

(
β1,

σ2
u∑n

i=1(Xi − X )2

)
Under Assumptions 1-6 and in any sample, we know that

β̂1 − β1

ŜE [β̂1]
∼ tn−2
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Null and alternative hypotheses review

Null: H0 : β1 = 0
I The null is the straw man we want to knock down.
I With regression, almost always null of no relationship

Alternative: Ha : β1 6= 0
I Claim we want to test
I Could do one-sided test, but you shouldn’t

Notice these are statements about the population parameters, not the
OLS estimates.
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Test statistic

Under the null of H0 : β1 = c , we can use the following familiar test
statistic:

T =
β̂1 − c

ŜE [β̂1]

Under the null hypothesis:
I large samples: T ∼ N (0, 1)
I any size sample with normal errors: T ∼ tn−2

I conservative to use tn−2 anyways since tn−2 is approximately normal in
large samples.

Thus, under the null, we know the distribution of T and can use that
to formulate a rejection region and calculate p-values.

By default, R shows you the test statistic for β1 = 0 and uses the t
distribution.
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Rejection region
Choose a level of the test, α, and find rejection regions that
correspond to that value under the null distribution:

P(−tα/2,n−2 < T < tα/2,n−2) = 1− α

This is exactly the same as with sample means and sample differences
in means, except that the degrees of freedom on the t distribution
have changed.
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p-value

The interpretation of the p-value is the same: the probability of seeing
a test statistic at least this extreme if the null hypothesis were true

Mathematically:

P

(∣∣∣∣∣ β̂1 − c

ŜE [β̂1]

∣∣∣∣∣ ≥ |Tobs |

)
If the p-value is less than α we would reject the null at the α level.
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Confidence intervals
Very similar to the approach with sample means. By the sampling
distribution of the OLS estimator, we know that we can find t-values
such that:

P
(
− tα/2,n−2 ≤

β̂1 − β1

ŜE [β̂1]
≤ tα/2,n−2

)
= 1− α

If we rearrange this as before, we can get an expression for confidence
intervals:

P
(
β̂1 − tα/2,n−2ŜE [β̂1] ≤ β1 ≤ β̂1 + tα/2,n−2ŜE [β̂1]

)
= 1− α

Thus, we can write the confidence intervals as:

β̂1 ± tα/2,n−2ŜE [β̂1]

We can derive these for the intercept as well:

β̂0 ± tα/2,n−2ŜE [β̂0]
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CIs Simulation Example

Returning to our simulation example we can simulate the sampling
distributions of the 95 % confidence interval estimates for β̂1 and β̂0

Statistical Inference for Simple Linear Regression
Diagnostics

Properties of the Least Squares Estimator (Point Estimation)
Hypothesis Tests
Confidence Intervals

Sampling distribution of interval estimates

Returning to the simulation example, we can simulate the sampling distributions of the
95% interval estimates for bβ0 and bβ1.
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CIs Simulation Example

Statistical Inference for Simple Linear Regression
Diagnostics

Properties of the Least Squares Estimator (Point Estimation)
Hypothesis Tests
Confidence Intervals

Sampling distribution of interval estimates

When we repeat the process over and over, we expect 95% of the confidence intervals
to contain the true parameters.
Note that, in a given sample, one CI may cover its true value and the other may not.

ββ̂0

0 2 4 6 8 10

ββ̂1

−2.0 −1.5 −1.0 −0.5 0.0

Gov2000: Quantitative Methodology for Political Science I
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Prediction error

How do we judge how well a line fits the data?

One way is to find out how much better we do at predicting Y once
we include X into the regression model.

Prediction errors without X : best prediction is the mean, so our
squared errors, or the total sum of squares (SStot) would be:

SStot =
n∑

i=1

(Yi − Y )2

Once we have estimated our model, we have new prediction errors,
which are just the sum of the squared residuals or SSres :

SSres =
n∑

i=1

(Yi − Ŷi )
2
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Sum of Squares
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Sum of Squares
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R-square

By definition, the residuals have to be smaller than the deviations
from the mean, so we might ask the following: how much lower is the
SSres compared to the SStot?

We quantify this question with the coefficient of determination or R2.
This is the following:

R2 =
SStot − SSres

SStot
= 1− SSres

SStot

This is the fraction of the total prediction error eliminated by
providing information on X .

Alternatively, this is the fraction of the variation in Y is “explained
by” X .

R2 = 0 means no relationship

R2 = 1 implies perfect linear fit

Stewart (Princeton) Week 5: Simple Linear Regression September 28-October 2, 2020 86 / 127



Is R-squared useful?
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Is R-squared useful?
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Is R-squared useful?
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Interpreting a Regression
Let’s have a quick chat about interpretation.



0


1
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State Legislators and African American Population
Interpretations of increasing quality:

> summary(lm(beo ~ bpop, data = D))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.31489 0.32775 -4.012 0.000264 ***

bpop 0.35848 0.02519 14.232 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.317 on 39 degrees of freedom

Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344

F-statistic: 202.6 on 1 and 39 DF, p-value: < 2.2e-16

“In states where an additional .01 proportion of the population is African American, we
observe on average .035 proportion more African American state legislators (between .03
and .04 with 95% confidence).”

(still not perfect, the best will be subject matter specific. is fairly clear it is non-causal,
gives uncertainty.)
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Ground Rules: Interpretation of the Slope

I almost didn’t include the last example in the slides. It is hard to give
ground rules that cover all cases. Regressions are a part of marshaling
evidence in an argument which makes them naturally specific to context.

1 Give a short, but precise interpretation of the association using
interpretable language and units

2 If the association has a causal interpretation explain why, otherwise
do not imply a causal interpretation.

3 Provide a meaningful sense of uncertainty

4 Indicate the practical significance of the finding for your argument.
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Goal Check: Understand lm() Output

Call:

lm(formula = sr ~ pop15, data = LifeCycleSavings)

Residuals:

Min 1Q Median 3Q Max

-8.637 -2.374 0.349 2.022 11.155

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.49660 2.27972 7.675 6.85e-10 ***

pop15 -0.22302 0.06291 -3.545 0.000887 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.03 on 48 degrees of freedom

Multiple R-squared: 0.2075,Adjusted R-squared: 0.191

F-statistic: 12.57 on 1 and 48 DF, p-value: 0.0008866
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We Covered

Hypothesis tests

Confidence intervals

Goodness of fit measures

Next Time: Non-linearities
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Where We’ve Been and Where We’re Going...

Last Week
I hypothesis testing
I what is regression

This Week
I mechanics and properties of simple linear regression
I inference and measures of model fit
I confidence intervals for regression
I goodness of fit

Next Week
I mechanics with two regressors
I omitted variables, multicollinearity

Long Run
I probability → inference → regression → causal inference

Stewart (Princeton) Week 5: Simple Linear Regression September 28-October 2, 2020 93 / 127



1 Mechanics of OLS

2 Classical Perspective (Part 1, Unbiasedness)
Sampling Distributions
Classical Assumptions 1–4

3 Classical Perspective: Variance
Sampling Variance
Gauss-Markov
Large Samples
Small Samples
Agnostic Perspective

4 Inference
Hypothesis Tests
Confidence Intervals
Goodness of fit
Interpretation

5 Non-linearities
Log Transformations
Fun With Logs
LOESS
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Non-linear CEFs

When we say that CEFs are linear with regression, we mean linear in
parameters but by including transformations of our variables we can
make non-linear shapes of pre-specified functional forms.

Many of these non-linear transformations are made by creating
multiple variables out of a single X and so will have to wait for future
weeks.

The function log(·) is one common transformation that has only one
parameter.

This is particularly useful for positive and right-skewed variables.
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Why does everyone keep logging stuff??

Logs linearize exponential growth. 

exponential
grows by a fixed percent.grows by a fixed amount.

linear
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How? Let’s look.
First, here’s a graph showing exponential growth.
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What happens when we take the log of  y?

logy = z ez = y
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Interpretation

The log transformation changes the interpretation of β1:

Regress log(Y ) on X −→ β1 approximates percent increase in our
prediction of Y associated with one unit increase in X .

Regress Y on log(X ) −→ β1 approximates increase in Y associated
with a percent increase in X .

Note that these approximations work only for small increments.

In particular, they do not work when X is a discrete random variable.
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Example from the American War Library
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JapanItaly TriesteNicaraguaTexas Border Cortina WarHaitiOperation Enduring Freedom, Afghanistan TheaterMexican WarOperation Enduring Freedom, AfghanistanFranco−Amer Naval WarNorth Atlantic Naval WarTerrorism Riyadh, Saudi ArabiaChina Civil WarDominican RepublicRussia Siberia ExpeditionBarbary WarsNicaraguaMexicoChina Yangtze ServiceGrenadaSouth KoreaTexas War Of IndependenceLebanonIsrael Attack/USS LibertyDominican RepublicPanamaChina Boxer RebellionMoro CampaignsRussia North ExpeditionPersian Gulf, Op Desert Shield/StormTerrorism Oklahoma CityPersian GulfTerrorism Khobar Towers, Saudi ArabiaYemen, USS ColeTerrorism, World Trade CenterSpanish American WarIndian WarsPhilippines WarD−DayAleutian CampaignWar of 1812Revolutionary War
Iwo JimaOperation Iraqi Freedom, Iraq

Okinawa

Korean War

Civil War, South
Vietnam War

World War I

Civil War, North

World War II

β̂1 = 1.23 −→ One additional soldier killed predicts 1.23 additional soldiers
wounded
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Wounded (Scale in Levels)
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Wounded (Logarithmic Scale)
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Regression: Log-Level
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β̂1 = 0.0000237 −→ One additional soldier killed predicts 0.0023 percent increase
in the number of soldiers wounded
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Regression: Log-Log
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β̂1 = 0.797 −→ A percent increase in deaths predicts 0.797 percent increase in
the wounded
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Four Most Commonly Used Models

Model Equation β1 Interpretation

Level-Level Y = β0 + β1X ∆Y = β1∆X
Log-Level log(Y ) = β0 + β1X %∆Y = 100β1∆X
Level-Log Y = β0 + β1log(X ) ∆Y = (β1/100)%∆X
Log-Log log(Y ) = β0 + β1log(X ) %∆Y = β1%∆X
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Why Does This Approximation Work?

A useful thing to know is that for small x ,

log(1 + x) ≈ x

exp(x) ≈ 1 + x

This can be derived from a series expansion of the log function.
Numerically, when |x | ≤ .1, the approximation is within 0.001.
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Why Does This Approximation Work?
Take two numbers a > b > 0. The percentage difference between a and b
is

p = 100

(
a− b

b

)
We can rewrite this as

a

b
= 1 +

p

100

Taking natural logs

log(a)− log(b) = log
(

1 +
p

100

)
Applying our approximation and multiplying by 100 we find,

p ≈ 100 (log(a)− log(b))
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Be Careful: Log-Level with binary X

Assume we have: log(Y ) = β0 + β1 X where X is binary with values 1 or 0.
Assume β1 > .2. What is the problem with saying that a one unit increase in X is
associated with a β1 · 100 percent change in Y ?

Log approximation is inaccurate for large changes like going from X = 0 to
X = 1. Instead the percent change in Y when X goes from 0 to 1 needs to be
computed using:

100(YX=1 − YX=0)/YX=0 = 100((YX=1/YX=0)− 1)

= 100((YX=1/YX=0)− 1)

= 100(exp(β1)− 1)

Recall: log(YX=1)− log(YX=0) = log(YX=1/YX=0) = β1.

A one unit change in X (ie. going from 0 to 1) is associated with a
100(exp(β1)− 1) percent increase in Y .
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Interpreting a Logged Outcome

On the last few slides, there was a bit that was a little dodgy.

When we log the outcome, we are no longer approximating E [Y |X ]
we are approximating E [log(Y )|X ].

Jensen’s inequality gives us information on this relation:
f (E [X ]) ≤ E [f (X )] for any convex function f ().

In practice, this means we are no longer characterizing the
expectation of Y and it is technically innaccurate to talk about Y ‘on
average’ changing in a certain way.

What are we characterizing? The geometric mean.
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Geometric Mean

exp(E (log(Y ))) = exp

(
1

N

N∑
i=1

log(Yi )

)

= exp

(
1

N
log(

N∏
i=1

Yi )

)

= exp

log

( N∏
i=1

Yi

) 1
N


=

(
N∏
i=1

Yi

) 1
N

= Geometric Mean(Y )

The geometric mean is a robust measure of central tendency.
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Application
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Core Idea

Classic approach : E (log (Y ) | X )︸ ︷︷ ︸
Mean of log

offspring income Y
given parent income X

= β0 + β1︸︷︷︸
Intergenerational

elasticity
(IGE)

log (X )︸ ︷︷ ︸
Log parent

income

MG proposal : log (E (Y | X ))︸ ︷︷ ︸
Log of mean

offspring income Y
given parent income X

= α0 + α1︸︷︷︸
Intergenerational
elasticity of the

expectation (IGEE)

log (X )︸ ︷︷ ︸
Log parent

income
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Geometric Mean is Closer to the Median Than the Mean
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Our Response

Images from this section are from this paper or earlier drafts of it.
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Two Implicit Choices

(1) Summary Statistics for the Conditional Distribution
(gets you down to one number per value of x)

and

(2) Assume or Learn a Functional Form
(potentially simplifies the set of summary statistics to a single number)
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Visualizing the MG Proposal
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Single Summary Statistics Necessarily Mask Information

1. Near equality 2. Distributed 3. A few high earners
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The Mean is a Normative Choice
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A New Proposal
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Single Number Summaries

A key selling point of the conventional IGE, the MG proposal and
regression more broadly is the single-number summary.

Any such summary necessitates a loss of information.

Even with more complex functional forms, we can always calculate
such a summary. For instance here, median is (on average) $4k higher
when parent income is $10k higher.

We obtain this by simply plugging in the 50th percentile at each
offspring income, adding $10k to each parent income and taking the
average.

If you are willing to commit to a quantity of interest, you can usually
estimate it directly.

At their best, single-number summaries are a way that the reader can
calculate any approximation to a variety of quantities they are
interested in. At their worst, they are a way for authors to abdicate
responsibility for choosing a clear quantity of interest.
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Broader Implications (Lee, Lundberg and Stewart)
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1 Mechanics of OLS

2 Classical Perspective (Part 1, Unbiasedness)
Sampling Distributions
Classical Assumptions 1–4

3 Classical Perspective: Variance
Sampling Variance
Gauss-Markov
Large Samples
Small Samples
Agnostic Perspective

4 Inference
Hypothesis Tests
Confidence Intervals
Goodness of fit
Interpretation

5 Non-linearities
Log Transformations
Fun With Logs
LOESS
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So what is ggplot2 doing?
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LOESS

We can combine the nonparametric kernel method idea of using only
local data with a parametric model

Idea: fit a linear regression within each band

Locally weighted scatterplot smoothing (LOWESS or LOESS):
1 Pick a subset of the data that falls in the interval [x − h , x + h]

2 Fit a line to this subset of the data (= local linear regression),
weighting the points by their distance to x using a kernel function

3 Use the fitted regression line to predict the expected value of
E [Y |X = x0]
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LOESS Example
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We Covered

Interpretation with logged independent and dependent variables

The geometric mean!
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This Week in Review

OLS!

Classical regression assumptions!

Inference!

Logs!

Going Deeper:

Aronow and Miller (2019) Foundations of Agnostic Statistics.
Cambridge University Press. Chapter 4.

Next week: Linear Regression with Two Variables!
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