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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I matrix form of linear regression
I inference and hypothesis tests

Next Week
I diagnostics

Long Run
I probability → inference → regression → causal inference
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1 Matrix Form of Regression
Estimation
Fun With(out) Weights

2 OLS Classical Inference in Matrix Form
Unbiasedness
Classical Standard Errors

3 Agnostic Inference

4 Standard Hypothesis Tests
t-Tests
Adjusted R2

F Tests for Joint Significance
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The Linear Model with New Notation

Remember that we wrote the linear model as the following for all
i ∈ [1, . . . , n]:

yi = β0 + xiβ1 + ziβ2 + ui

Imagine we had an n of 4. We could write out each formula:

y1 = β0 + x1β1 + z1β2 + u1 (unit 1)

y2 = β0 + x2β1 + z2β2 + u2 (unit 2)

y3 = β0 + x3β1 + z3β2 + u3 (unit 3)

y4 = β0 + x4β1 + z4β2 + u4 (unit 4)
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
Outcome is a linear combination of the the x, z, and u vectors
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Grouping Things into Matrices

Can we write this in a more compact form?
Yes! Let X and β be the following:

X
(4×3)

=


1 x1 z1

1 x2 z2

1 x3 z3

1 x4 z4

 β
(3×1)

=

 β0

β1

β2


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Back to Regression

X is the n × (k + 1) design matrix of independent variables

β be the (k + 1)× 1 column vector of coefficients.

Xβ will be n × 1:

Xβ = β0 + β1x1 + β2x2 + · · ·+ βkxk

We can compactly write the linear model as the following:

y
(n×1)

= Xβ
(n×1)

+ u
(n×1)

We can also write this at the individual level, where x′i is the ith row
of X:

yi = x′iβ + ui
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Multiple Linear Regression in Matrix Form

Let β̂ be the matrix of estimated regression coefficients and ŷ be the
vector of fitted values:

β̂ =


β̂0

β̂1
...

β̂k

 ŷ = Xβ̂

It might be helpful to see this again more written out:

ŷ =


ŷ1

ŷ2

...
ŷn

 = Xβ̂ =


1β̂0 + x11β̂1 + x12β̂2 + · · ·+ x1K β̂k
1β̂0 + x21β̂1 + x22β̂2 + · · ·+ x2K β̂k

...

1β̂0 + xn1β̂1 + xn2β̂2 + · · ·+ xnK β̂k


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 ŷ = Xβ̂

It might be helpful to see this again more written out:
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vector of fitted values:

β̂ =


β̂0

β̂1
...

β̂k

 ŷ = Xβ̂
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Residuals

We can easily write the residuals in matrix form:

û = y − Xβ̂

Our goal as usual is to minimize the sum of the squared residuals,
which we saw earlier we can write:

û′û = (y − Xβ̂)′(y − Xβ̂)
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OLS Estimator in Matrix Form

Goal: minimize the sum of the squared residuals.

Take (matrix) derivatives, set equal to 0.

Resulting first order conditions:

X′(y − Xβ̂) = 0

Rearranging:
X′Xβ̂ = X′y

In order to isolate β̂, we need to move the X′X term to the other side
of the equals sign.

We’ve learned about matrix multiplication, but what about matrix
“division”?
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Scalar Inverses

What is division in its simplest form? 1
a is the value such that a 1

a = 1:

For some algebraic expression: au = b, let’s solve for u:

1

a
au =

1

a
b

u =
b

a

Need a matrix version of this: 1
a .
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Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A−1, is the matrix
such that A−1A = I.

We can use the inverse to solve (systems of) equations:

Au = b

A−1Au = A−1b

Iu = A−1b

u = A−1b

If the inverse exists, we say that A is invertible or nonsingular.
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Back to OLS

Recall:
X′Xβ̂ = X′y

Let’s assume, for now, that the inverse of X′X exists
Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

See Aronow and Miller Theorem 4.1.4 for proof.
“ex prime ex inverse ex prime y” sear it into your soul.
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Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is approximately composed of the covariances
between the columns of X and y

“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!
Disclaimer: the final equation is exactly true for all non-intercept coefficients if you remove the intercept from X such that

β̂−0 = Var(X−0)−1Cov(X−0, y). The numerator and denominator are the variances and covariances if X and y are demeaned
and normalized by the sample size minus 1.
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Fun Without Weights
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Improper Linear Models

If you have to diagnose a disease are you better off with an expert or
a statistical model?

Meehl (1954) Clinical Versus Statistical Prediction: A Theoretical
Analysis and Review of the Evidence argued that proper linear models
outperform clinical intuition in many areas.

Proper linear model is one where predictor variables are given
optimized weights in some way (for example through regression).

Dawes argues that even improper linear models (those where weights
are set by hand or set to be equal), outperform clinical intuition.
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Example: Graduate Admissions

Faculty rated all students in the psych department at University of
Oregon.

Ratings predicted from a proper linear model of student GRE scores,
undergrad GPA and selectivity of student’s undergraduate institution.
Cross-validated correlation was .38.

Correlation of faculty ratings with average rating of admissions
committee was .19.

Standardized and equally weighted improper linear model, correlated
at .48.
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Other Examples

Self-assessed measures of marital happiness: modeled with improper
linear model of (rate of lovemaking - rate of arguments):
correlation of .40

Einhorn (1972) study of doctors coding biopsies of patients with
Hodgkin’s disease and then rated severity. Their rating of severity was
essentially uncorrelated with survival times, but the variables they
coded predicted outcomes using a regression model.
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Other Examples

Column descriptions:

C1) average of human judges

C2) model based on human judges

C3) randomly chosen weights preserving signs

C4) equal weighting

C5) cross-validated weights

C6) unattainable optimal linear model

Common pattern: c2, c3, c4, c5, c6 > c1
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The Argument

“People – especially the experts in a field – are much better at
selecting and coding information than they are at integrating it.”
(573)

The choice of variables is extremely important for prediction!

This parallels a piece of folk wisdom in the machine learning literature
that a better predictor will beat a better model every time.

People are good at picking out relevant information, but terrible at
integrating it.

The difficulty arises in part because people in general lack a strong
reference to the distribution of the predictors.

Linear models are robust to deviations from the optimal weights (see
also Waller 2008 on “Fungible Weights in Multiple Regression”)
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Thoughts on the Argument

Particularly in prediction, looking for the true or right model can be
quixotic.

The broader research project suggests that a big part of what
quantitative models are doing predictively, is focusing human talent in
the right place.

This all applies because predictors well chosen and the sample size is
small (so it is hard to learn much from the data).

Dawes (1979) is an intellectual basis to support algorithmic decision
making. Roughly, if simple models are better than experts, than with
lots of data, complicated model could be much better than experts.
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We Covered

Matrix notation for OLS

Estimation mechanics

Next Time: Classical Inference and Properties
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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I matrix form of linear regression
I inference and hypothesis tests

Next Week
I diagnostics

Long Run
I probability → inference → regression → causal inference
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1 Matrix Form of Regression
Estimation
Fun With(out) Weights

2 OLS Classical Inference in Matrix Form
Unbiasedness
Classical Standard Errors

3 Agnostic Inference

4 Standard Hypothesis Tests
t-Tests
Adjusted R2

F Tests for Joint Significance

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 24 / 93



1 Matrix Form of Regression
Estimation
Fun With(out) Weights

2 OLS Classical Inference in Matrix Form
Unbiasedness
Classical Standard Errors

3 Agnostic Inference

4 Standard Hypothesis Tests
t-Tests
Adjusted R2

F Tests for Joint Significance

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 24 / 93



OLS Assumptions in Matrix Form

1 Linearity: y = Xβ + u

2 Random/iid sample: (yi , x
′
i ) are a iid sample from the population.

3 No perfect collinearity: X is an n × (k + 1) matrix with rank k + 1

4 Zero conditional mean: E [u|X] = 0

5 Homoskedasticity: var(u|X) = σ2
uIn

6 Normality: u|X ∼ N(0, σ2
uIn)
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Assumption 3: No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.

If X has rank k + 1, then all of its columns are linearly independent

. . . If all of the columns are linearly independent, then the assumption
of no perfect collinearity hold.

If X has rank k + 1, then (X′X) is invertible (see linear algebra book
for proof)

Just like variation in X led us to be able to divide by the variance in
simple OLS
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Expected Values of Vectors

The expected value of the vector is just the expected value of its
entries.

Using the zero mean conditional error assumptions:

E [u|X] =


E [u1|X]
E [u2|X]

...
E [un|X]

 =


0
0
...
0

 = 0
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Unbiasedness of β̂

Is β̂ still unbiased under assumptions 1-4? Does E [β̂] = β?

β̂ =
(
X′X

)−1
X′y (linearity and no collinearity)

β̂ =
(
X′X

)−1
X′(Xβ + u)

β̂ =
(
X′X

)−1
X′Xβ +

(
X′X

)−1
X′u

β̂ = Iβ +
(
X′X

)−1
X′u

β̂ = β +
(
X′X

)−1
X′u

E [β̂|X] = E [β|X] + E [
(
X′X

)−1
X′u|X]

E [β̂|X] = β +
(
X′X

)−1
X′E [u|X]

E [β̂|X] = β (zero conditional mean)

E [E [β̂|X]] = β (law of iterated expectations)

So, yes!
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A Much Shorter Proof of Unbiasedness of β̂

A shorter (but less helpful later) proof of unbiasedness,

E [E [β̂|X]] = E [E [
(
X′X

)−1
X′y|X]] (definition of the estimator)

= E [
(
X′X

)−1
X′Xβ] (expectation of y)

= β

Now we know the sampling distribution is centered on β we want to derive
the variance of the sampling distribution conditional on X .
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Assumption 5: Homoskedasticity

The stated homoskedasticity assumption is: var(u|X) = σ2
uIn

To really understand this we need to know what var(u|X) is in full
generality.

The variance of a vector is actually a matrix:

var[u] = Σu =


var(u1) cov(u1, u2) . . . cov(u1, un)

cov(u2, u1) var(u2) . . . cov(u2, un)
...

. . .

cov(un, u1) cov(un, u2) . . . var(un)


This matrix is always symmetric since cov(ui , uj) = cov(uj , ui ) by
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Assumption 5: The Meaning of Homoskedasticity

What does var(u|X) = σ2
uIn mean?

In is the n × n identity matrix, σ2
u is a scalar.

Visually:

var[u] = σ2
uIn =


σ2
u 0 0 . . . 0

0 σ2
u 0 . . . 0

...
0 0 0 . . . σ2

u


In less matrix notation:

I var(ui ) = σ2
u for all i (constant variance)

I cov(ui , uj) = 0 for all i 6= j (implied by iid)
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Rule: Variance of Linear Function of Random Vector

Recall that for a linear transformation of a random variable X we have
V [aX + b] = a2V [X ] with constants a and b.

We will need an analogous rule for linear functions of random vectors.

Definition (Variance of Linear Transformation of Random Vector)

Let f (u) = Au + B be a linear transformation of a random vector u with
non-random vectors or matrices A and B. Then the variance of the
transformation is given by:

V [f (u)] = V [Au + B] = AV [u]A′
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Conditional Variance of β̂
β̂ = β + (X′X)

−1 X′u and E [β̂|X] = β + E [(X′X)
−1 X′u|X] = β so the OLS

estimator is a linear function of the errors. Thus:

V [β̂|X] = V [β|X] + V [(X′X)
−1

X′u|X]

= V [(X′X)
−1

X′u|X]

= (X′X)
−1

X′V [u|X]((X′X)
−1

X′)′ (X is nonrandom given X)

= (X′X)
−1

X′V [u|X]X (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2I (X′X)
−1

X′X (X′X)
−1

= σ2 (X′X)
−1

This gives the (k + 1)× (k + 1) variance-covariance matrix of β̂.

To estimate V [β̂|X], we replace σ2 with its unbiased estimator σ̂2, which is now
written using matrix notation as:

σ̂2 =

∑
i û

2
i

n − (k + 1)
=

û′û

n − (k + 1)
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û′û
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Sampling Variance for β̂

Under assumptions 1-5, the variance-covariance matrix of the OLS
estimators is given by:

V [β̂|X] = σ2
(
X′X

)−1
=

β̂0 β̂1 β̂2 · · · β̂k
β̂0 V [β̂0] Cov[β̂0, β̂1] Cov[β̂0, β̂2] · · · Cov[β̂0, β̂k ]

β̂1 Cov[β̂0, β̂1] V [β̂1] Cov[β̂1, β̂2] · · · Cov[β̂1, β̂k ]

β̂2 Cov[β̂0, β̂2] Cov[β̂1, β̂2] V [β̂2] · · · Cov[β̂2, β̂k ]
...

...
...

...
. . .

...

β̂k Cov[β̂0, β̂k ] Cov[β̂k , β̂1] Cov[β̂k , β̂2] · · · V [β̂k ]

Recall that standard errors are the square root of the diagonals of this
matrix.
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Overview of Inference in the General Setting
Under assumption 1-5 in large samples:

β̂j − βj
ŜE [β̂j ]

∼ N(0, 1)

In small samples, under assumptions 1-6,

β̂j − βj
ŜE [β̂j ]

∼ tn−(k+1)

Estimated standard errors are:

ŜE [β̂j ] =

√
v̂ar[β̂]jj

v̂ar[β̂] = σ̂2
u(X′X)−1

σ̂2
u =

û′û

n − (k + 1)

Thus, confidence intervals and hypothesis tests proceed in essentially
the same way.
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ŜE [β̂j ] =

√
v̂ar[β̂]jj

v̂ar[β̂] = σ̂2
u(X′X)−1

σ̂2
u =

û′û
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Properties of the OLS Estimator: Summary

Theorem

Under Assumptions 1–6, the (k + 1)× 1 vector of OLS estimators β̂, conditional
on X, follows a multivariate normal distribution with mean β and
variance-covariance matrix σ2 (X′X)

−1
:

β̂|X ∼ N
(
β, σ2 (X′X)

−1
)

Each element of β̂ (i.e. β̂0, ..., β̂k+1) is normally distributed, and β̂ is an
unbiased estimator of β as E [β̂] = β

Variances and covariances are given by V [β̂|X] = σ2 (X′X)−1

An unbiased estimator for the error variance σ2 is given by

σ̂2 =
û′û

n − (k + 1)

With a large sample, β̂ approximately follows the same distribution under
Assumptions 1–5 only, i.e., without assuming the normality of u.
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Implications of the Variance-Covariance Matrix

Note that the sampling distribution is a joint distribution because it
involves multiple random variables.

This is because the sampling distribution of the terms in β̂ are
correlated.

In a practical sense, this means that our uncertainty about
coefficients is correlated across variables.
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Multivariate Normal: Simulation
Y = β0 + β1X1 + u with u ∼ N(0, σ2

u = 4) and β0 = 5, β1 = −1, and n = 100:
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Marginals of Multivariate Normal RVs are Normal
Y = β0 + β1X1 + u with u ∼ N(0, σ2

u = 4) and β0 = 5, β1 = −1, and n = 100:
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Matrix Notation Overview
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We Covered

Unbiasedness

Classical Standard Errors

Next Time: Agnostic Inference
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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I matrix form of linear regression
I inference and hypothesis tests

Next Week
I diagnostics

Long Run
I probability → inference → regression → causal inference
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1 Matrix Form of Regression
Estimation
Fun With(out) Weights

2 OLS Classical Inference in Matrix Form
Unbiasedness
Classical Standard Errors

3 Agnostic Inference

4 Standard Hypothesis Tests
t-Tests
Adjusted R2

F Tests for Joint Significance
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Agnostic Perspective on the OLS estimator

We know the population value of β is:

β = E
[
X′X

]−1
E
[
X′y
]

How do we get an estimator of this?

Plug-in principle  replace population expectation with sample
versions:

β̂ =
(
X′X

)−1
X′y
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Asymptotic OLS inference
With this representation, we can write the OLS estimator as follows:

β̂ = β +
(
X′X

)−1
X′u

Core idea: X′u is the sum of r.v.s so the CLT applies.

That, plus some asymptotic theory allows us to say:

√
N(β̂ − β)

d→ N(0,Ω)

The covariance matrix, Ω is given as:

Ω = E [X′X]−1E [X′Diag(u2)X]E [X′X]−1

We will again be able to replace u with its empirical counterpart (the
residuals) û = y − Xβ̂, and X with its sample counterpart.

No need for assumptions A1 (linearity), A4 (conditional mean zero
errors) or A5 (homoskedasticity) needed! Just IID (A2), no perfect
collinearity (A3) and asymptotics.
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Stepping Back: The Classical Approach Homoskedasticity
Remember what we did before:

β̂ =
(
X′X

)−1
X′y

Let Var[u|X] = Σ

Recall before we used Assumptions 1-4 to show:

Var[β̂|X] =
(
X′X

)−1
X′ΣX

(
X′X

)−1

With homoskedasticity, Σ = σ2I, we simplified

Var[β̂|X] = (X′X)
−1

X′ΣX (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2(X′X)
−1

X′X (X′X)
−1

= σ2 (X′X)
−1

Replace σ2 with estimate σ̂2 will give us our estimate of the
covariance matrix
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What Does This Rule Out?
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Non-constant Error Variance

Homoskedastic:

V [u|X] = σ2I =


σ2 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 0 . . . σ2



Heteroskedastic:

V [u|X] =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n


Independent, not identical

Cov(ui , uj |X) = 0

Var(ui |X) = σ2
i
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Consequences of Heteroskedasticity Under Classical SEs

Standard error estimates incorrect:

ŜE [β̂1] =

√
σ̂2∑

i (Xi − X )2

α-level tests, the probability of Type I error 6= α

Coverage of 1− α CIs 6= 1− α
OLS is not BLUE

However:

I β̂ still unbiased and consistent for β
I degree of the problem depends on how serious the heteroskedasticity is
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Heteroskedasticity Consistent Estimator

Under non-constant error variance:

Var[u] = Σ =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n


When Σ 6= σ2I, we are stuck with this expression:

Var[β̂|X] =
(
X′X

)−1
X′ΣX

(
X′X

)−1

Idea: If we can consistently estimate the components of Σ, we could
directly use this expression by replacing Σ with its estimate, Σ̂.
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White’s Heteroskedasticity Consistent Estimator
Suppose we have heteroskedasticity of unknown form (but zero covariance):

V [u] = Σ =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n



then V [β̂|X] = (X′X)
−1 X′ΣX (X′X)

−1
and White (1980) shows that

V̂ [β̂|X] = (X′X)
−1

X′


û2

1 0 0 . . . 0
0 û2

2 0 . . . 0
...

0 0 0 . . . û2
n

X (X′X)
−1

is a consistent estimator of V [β̂|X] under any form of heteroskedasticity
consistent with V [u] above.

The estimate based on the above is called the heteroskedasticity consistent (HC)

or robust standard errors. This also coincides with the agnostic standard errors!
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Intuition for Robust Standard Errors

Core intuition: while Σ̂ is an n × n matrix, X′Σ̂X is a (k + 1)× (k + 1)
matrix.

So there is hope of estimating it consistently as sample size grows
even when every true error variance is unique.

Σ̂ =


û2

1 0 0 . . . 0
0 û2

2 0 . . . 0
...

0 0 0 . . . û2
n



X′ΣX =


∑

i xi ,1xi ,1û
2
i

∑
i xi ,1xi ,2û

2
i . . .

∑
i xi ,1xi ,k+1û

2
i∑

i xi ,2xi ,1û
2
i

∑
i xi ,2xi ,2û

2
i . . .

∑
i xi ,2xi ,k+1û

2
i

...∑
i xi ,k+1xi ,1û

2
i

∑
i xi ,k+1xi ,2û

2
i . . .

∑
i xi ,k+1xi ,k+1û

2
i


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0 û2

2 0 . . . 0
...

0 0 0 . . . û2
n



X′ΣX =


∑

i xi ,1xi ,1û
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2
i . . .

∑
i xi ,1xi ,k+1û
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White’s Heteroskedasticity Consistent Estimator
Robust standard errors are easily computed with the “sandwich” formula:

1 Fit the regression and obtain the residuals û

2 Construct the “meat” matrix Σ̂ with squared residuals in diagonal:

Σ̂ =


û2

1 0 0 . . . 0
0 û2

2 0 . . . 0
...

0 0 0 . . . û2
n


3 Plug Σ̂ into the sandwich formula to obtain the robust estimator of the

variance-covariance matrix

V [β̂|X] = (X′X)
−1

X′Σ̂X (X′X)
−1

There are various small sample corrections to improve performance when sample
size is small. The most common variant (sometimes labeled HC1) is:

V [β̂|X] =
n

n − k − 1
·
(
X′X

)−1
X′Σ̂X

(
X′X

)−1
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0 û2

2 0 . . . 0
...

0 0 0 . . . û2
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n


3 Plug Σ̂ into the sandwich formula to obtain the robust estimator of the

variance-covariance matrix

V [β̂|X] = (X′X)
−1

X′Σ̂X (X′X)
−1

There are various small sample corrections to improve performance when sample
size is small. The most common variant (sometimes labeled HC1) is:

V [β̂|X] =
n

n − k − 1
·
(
X′X

)−1
X′Σ̂X

(
X′X

)−1

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 53 / 93



Notes on White’s Robust Standard Errors

Doesn’t change estimate β̂.

Provides a plug-and-play estimate of V [β̂] which can be used with
SEs, confidence intervals etc.—does not provide V [u].

Consistent for V [β̂] under any form of heteroskedasticity (i.e. where
the covariances are 0).

This is a large sample result, best with large n

For small n, performance might be poor and the estimates are
downward biased (correction factors exist but are often insufficient)

As we saw, we can arrive at White’s heteroskedasticity consistent
standard errors using the plug-in principle and thus in some ways,
these are the natural way of getting standard errors in the agnostic
regression framework.

Robust SEs converge to same point as the bootstrap.

This is a general framework (more to come in Week 8).

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 54 / 93



Notes on White’s Robust Standard Errors

Doesn’t change estimate β̂.

Provides a plug-and-play estimate of V [β̂] which can be used with
SEs, confidence intervals etc.—does not provide V [u].

Consistent for V [β̂] under any form of heteroskedasticity (i.e. where
the covariances are 0).

This is a large sample result, best with large n

For small n, performance might be poor and the estimates are
downward biased (correction factors exist but are often insufficient)

As we saw, we can arrive at White’s heteroskedasticity consistent
standard errors using the plug-in principle and thus in some ways,
these are the natural way of getting standard errors in the agnostic
regression framework.

Robust SEs converge to same point as the bootstrap.

This is a general framework (more to come in Week 8).

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 54 / 93



Notes on White’s Robust Standard Errors

Doesn’t change estimate β̂.

Provides a plug-and-play estimate of V [β̂] which can be used with
SEs, confidence intervals etc.—does not provide V [u].

Consistent for V [β̂] under any form of heteroskedasticity (i.e. where
the covariances are 0).

This is a large sample result, best with large n

For small n, performance might be poor and the estimates are
downward biased (correction factors exist but are often insufficient)

As we saw, we can arrive at White’s heteroskedasticity consistent
standard errors using the plug-in principle and thus in some ways,
these are the natural way of getting standard errors in the agnostic
regression framework.

Robust SEs converge to same point as the bootstrap.

This is a general framework (more to come in Week 8).

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 54 / 93



Notes on White’s Robust Standard Errors

Doesn’t change estimate β̂.

Provides a plug-and-play estimate of V [β̂] which can be used with
SEs, confidence intervals etc.—does not provide V [u].

Consistent for V [β̂] under any form of heteroskedasticity (i.e. where
the covariances are 0).

This is a large sample result, best with large n

For small n, performance might be poor and the estimates are
downward biased (correction factors exist but are often insufficient)

As we saw, we can arrive at White’s heteroskedasticity consistent
standard errors using the plug-in principle and thus in some ways,
these are the natural way of getting standard errors in the agnostic
regression framework.

Robust SEs converge to same point as the bootstrap.

This is a general framework (more to come in Week 8).
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We Covered

Agnostic approach to deriving the estimator (see more in the Aronow
and Miller textbook if you are interested).

Robust standard errors and how they flow naturally from the plugin
principle.

Next Time: Hypothesis Tests
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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I matrix form of linear regression
I inference and hypothesis tests

Next Week
I diagnostics

Long Run
I probability → inference → regression → causal inference
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1 Matrix Form of Regression
Estimation
Fun With(out) Weights

2 OLS Classical Inference in Matrix Form
Unbiasedness
Classical Standard Errors

3 Agnostic Inference

4 Standard Hypothesis Tests
t-Tests
Adjusted R2

F Tests for Joint Significance
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Running Example: Chilean Referendum on Pinochet

The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.

Data: national survey conducted in April and May of 1988 by
FLACSO in Chile.

Outcome: 1 if respondent intends to vote for Pinochet, 0 otherwise.
We can interpret the β slopes as marginal “effects” on the probability
that respondent votes for Pinochet.

Plebiscite was held on October 5, 1988. The No side won with 56%
of the vote, with 44% voting Yes.

We model the intended Pinochet vote as a linear function of gender,
education, and age of respondents.
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Hypothesis Testing in R

Model the intended Pinochet vote as a linear function of gender,
education, and age of respondents.

R Code
> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.4875 on 1699 degrees of freedom

Multiple R-squared: 0.05112, Adjusted R-squared: 0.04945

F-statistic: 30.51 on 3 and 1699 DF, p-value: < 2.2e-16
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The t-Value for Multiple Linear Regression

Consider testing a hypothesis about a single regression coefficient βj :

H0 : βj = c

In the simple linear regression we used the t-value to test this kind of
hypothesis.

We can consider the same t-value about βj for the multiple regression:

T =
β̂j − c

ŜE (β̂j)

How do we compute ŜE (β̂j)?

ŜE (β̂j) =

√
V̂ (β̂j) =

√
V̂ (β̂)(j,j) =

√
σ̂2(X′X)−1

(j,j)

where A(j,j) is the (j , j) element of matrix A.

That is, take the variance-covariance matrix of β̂ and square root the
diagonal element corresponding to j .
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Getting the Standard Errors
R Code

> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

We can pull out the variance-covariance matrix σ̂2(X′X)−1 in R from the lm() object:

R Code
> V <- vcov(fit)

> V

(Intercept) fem educ age

(Intercept) 2.642311e-03 -3.455498e-04 -5.270913e-04 -3.357119e-05

fem -3.455498e-04 5.623170e-04 2.249973e-05 8.285291e-07

educ -5.270913e-04 2.249973e-05 1.922354e-04 3.411049e-06

age -3.357119e-05 8.285291e-07 3.411049e-06 6.914098e-07

> sqrt(diag(V))

(Intercept) fem educ age

0.0514034097 0.0237132251 0.0138648980 0.0008315105
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Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (βj = c) is identical to the simple
regression case, except that our reference distribution is tn−k−1 instead of tn−2.

1 Compute the t-value as T = (β̂j − c)/ŜE [β̂j ]

2 Compare the value to the critical value tα/2 for the α level test, which under
the null hypothesis satisfies

P
(
−tα/2 ≤ T ≤ tα/2

)
= 1− α

3 Decide whether the realized value of T in our data is unusual given the
distribution of the test statistic under the null hypothesis.

4 Finally, either declare that we reject H0 or not, or report the p-value.
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2 Compare the value to the critical value tα/2 for the α level test, which under
the null hypothesis satisfies

P
(
−tα/2 ≤ T ≤ tα/2

)
= 1− α

3 Decide whether the realized value of T in our data is unusual given the
distribution of the test statistic under the null hypothesis.

4 Finally, either declare that we reject H0 or not, or report the p-value.

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 62 / 93



Confidence Intervals
To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use tn−k−1 instead of tn−2

Since we know the sampling distribution for our t-value:

T =
β̂j − c

ŜE [β̂j ]
∼ tn−k−1

So we also know the probability that the value of our test statistics falls into a given
interval:

P

(
−tα/2 ≤

β̂j − βj
ŜE [β̂j ]

≤ tα/2

)
= 1− α

We rearrange: [
β̂j − tα/2ŜE [β̂j ] , β̂j + tα/2ŜE [β̂j ]

]
and thus can construct the confidence intervals as usual using:

β̂j ± tα/2 · ŜE [β̂j ]
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Confidence Intervals in R
R Code

> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

R Code
> confint(fit)

2.5 % 97.5 %

(Intercept) 0.303407780 0.50504909

fem 0.089493169 0.18251357

educ -0.087954435 -0.03356629

age 0.002147755 0.00540954
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Testing Hypothesis About a Linear Combination of βj

R Code
> fit <- lm(REALGDPCAP ~ Region, data = D)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4452.7 783.4 5.684 2.07e-07 ***

RegionAfrica -2552.8 1204.5 -2.119 0.0372 *

RegionAsia 148.9 1149.8 0.129 0.8973

RegionLatAmerica -271.3 1007.0 -0.269 0.7883

RegionOecd 9671.3 1007.0 9.604 5.74e-15 ***

β̂Asia and β̂LAm are close. So we may want to test the null hypothesis:

H0 : βLAm = βAsia ⇔ βLAm − βAsia = 0

against the alternative of

H1 : βLAm 6= βAsia ⇔ βLAm − βAsia 6= 0

What would be an appropriate test statistic for this hypothesis?
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R Code
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RegionOecd 9671.3 1007.0 9.604 5.74e-15 ***

Let’s consider a t-value:

T =
β̂LAm − β̂Asia

ŜE(β̂LAm − β̂Asia)

We will reject H0 if T is sufficiently different from zero.

Note that unlike the test of a single hypothesis, both β̂LAm and β̂Asia are random
variables, hence the denominator.
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Testing Hypothesis About a Linear Combination of βj
Our test statistic:

T =
β̂LAm − β̂Asia

ŜE (β̂LAm − β̂Asia)
∼ tn−k−1

How do you find ŜE (β̂LAm − β̂Asia)?

Is it ŜE (β̂LAm)− ŜE (β̂Asia)? No!

Is it ŜE (β̂LAm) + ŜE (β̂Asia)? No!

Recall the following property of the variance:

V (X ± Y ) = V (X ) + V (Y )± 2Cov(X ,Y )

Therefore, the standard error for a linear combination of coefficients is:

ŜE (β̂1 ± β̂2) =

√
V̂ (β̂1) + V̂ (β̂2)± 2Ĉov[β̂1, β̂2]

which we can calculate from the estimated covariance matrix of β̂.

Since the estimates of the coefficients are correlated, we need the covariance
term.
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ŜE (β̂1 ± β̂2) =

√
V̂ (β̂1) + V̂ (β̂2)± 2Ĉov[β̂1, β̂2]
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Example: GDP per capita on Regions

R Code
> fit <- lm(REALGDPCAP ~ Region, data = D)

> V <- vcov(fit)

> V

(Intercept) RegionAfrica RegionAsia RegionLatAmerica

(Intercept) 613769.9 -613769.9 -613769.9 -613769.9

RegionAfrica -613769.9 1450728.8 613769.9 613769.9

RegionAsia -613769.9 613769.9 1321965.9 613769.9

RegionLatAmerica -613769.9 613769.9 613769.9 1014054.6

RegionOecd -613769.9 613769.9 613769.9 613769.9

RegionOecd

(Intercept) -613769.9

RegionAfrica 613769.9

RegionAsia 613769.9

RegionLatAmerica 613769.9

RegionOecd 1014054.6
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Example: GDP per capita on Regions

We can then compute the test statistic for the hypothesis of interest:

R Code
> se <- sqrt(V[4,4] + V[3,3] - 2*V[3,4])

> se

[1] 1052.844

>

> tstat <- (coef(fit)[4] - coef(fit)[3])/se

> tstat

RegionLatAmerica

-0.3990977

t =
β̂LAm − β̂Asia

ŜE(β̂LAm − β̂Asia)
where

ŜE(β̂LAm − β̂Asia) =

√
V̂ (β̂LAm) + V̂ (β̂Asia)− 2Ĉov[β̂LAm, β̂Asia]

Plugging in we get t ≈ −0.40. So what do we conclude?

We cannot reject the null that the difference in average GDP resulted from chance.
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ŜE(β̂LAm − β̂Asia)
where
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Plugging in we get t ≈ −0.40. So what do we conclude?

We cannot reject the null that the difference in average GDP resulted from chance.

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 69 / 93



Example: GDP per capita on Regions

We can then compute the test statistic for the hypothesis of interest:
R Code

> se <- sqrt(V[4,4] + V[3,3] - 2*V[3,4])

> se

[1] 1052.844

>

> tstat <- (coef(fit)[4] - coef(fit)[3])/se

> tstat

RegionLatAmerica

-0.3990977

t =
β̂LAm − β̂Asia
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Aside: Adjusted R2

R Code
> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.4875 on 1699 degrees of freedom

Multiple R-squared: 0.05112, Adjusted R-squared: 0.04945

F-statistic: 30.51 on 3 and 1699 DF, p-value: < 2.2e-16
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Aside: Adjusted R2

R2 often used to assess in-sample model fit. Recall

R2 = 1− SSres

SStot

where SSres are the sum of squared residuals and the SStot are the sum of
the squared deviations from the mean.

Perhaps problematically, it can be shown that R2 always stays constant or
increases with more explanatory variables

So, how do we penalize more complex models? Adjusted R2

This makes R2 more ‘comparable’ across models with different numbers of
variables, but the next section will show you an even better way to approach
that problem in a testing framework.

Still since people report it, the next slide derives adjusted R2 (but we are
going to skip it),
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This makes R2 more ‘comparable’ across models with different numbers of
variables, but the next section will show you an even better way to approach
that problem in a testing framework.

Still since people report it, the next slide derives adjusted R2 (but we are
going to skip it),
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Aside: Adjusted R2

Key idea: rewrite R2 in terms of variances

R2 = 1− SSres/n

SStot/n

= 1− Ṽ (SSres)

Ṽ (SStot)

where Ṽ is a biased estimator of the population variance.

What if we replace the biased estimator with the unbiased estimators

V̂ (SSres) = SSres/(n − k − 1)

V̂ (SStot) = SStot/(n − 1)

Some algebra gets us to

R2
adj = R2 − (1− R2)

k − 1

n − k︸ ︷︷ ︸
model complexity penalty

Adjusted R2 will always be smaller than R2 and can sometimes be negative!

For more about R2, check out Kvalseth (1985) “Cautionary Note about
R2”: https://doi.org/10.1080/00031305.1985.10479448
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where Ṽ is a biased estimator of the population variance.

What if we replace the biased estimator with the unbiased estimators

V̂ (SSres) = SSres/(n − k − 1)

V̂ (SStot) = SStot/(n − 1)

Some algebra gets us to

R2
adj = R2 − (1− R2)

k − 1

n − k︸ ︷︷ ︸
model complexity penalty

Adjusted R2 will always be smaller than R2 and can sometimes be negative!

For more about R2, check out Kvalseth (1985) “Cautionary Note about
R2”: https://doi.org/10.1080/00031305.1985.10479448

Stewart (Princeton) Week 7: Multiple Regression October 12–16, 2020 72 / 93

https://doi.org/10.1080/00031305.1985.10479448


Aside: Adjusted R2

Key idea: rewrite R2 in terms of variances

R2 = 1− SSres/n

SStot/n
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Ṽ (SStot)
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Ṽ (SStot)
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Why Blow Through R2

In-sample model fit is not a particularly good indicator of model fit on
a new sample.

Adjusted R2 is solving a problem about increasingly complex models,
but by the time you reach this problem, you should be using held-out
data.

Stay tuned for more in Week 8!
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1 Matrix Form of Regression
Estimation
Fun With(out) Weights

2 OLS Classical Inference in Matrix Form
Unbiasedness
Classical Standard Errors

3 Agnostic Inference

4 Standard Hypothesis Tests
t-Tests
Adjusted R2

F Tests for Joint Significance
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F Test for Joint Significance of Coefficients

In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. β1 = β2 = β3 = 0)

Suppose our regression model is:

Voted = β0 + γ1FEMALE + β1EDUCATION+

γ2(FEMALE · EDUCATION) + β2AGE + γ3(FEMALE · AGE) + u

and we want to test
H0 : γ1 = γ2 = γ3 = 0.

Substantively, what question are we asking?

→ Do females and males vote systematically differently from each other?
(Under the null, there is no difference in either the intercept or slopes between
females and males).

This is an example of a joint hypothesis test involving three restrictions: γ1 = 0,
γ2 = 0, and γ3 = 0.

If all the interaction terms and the group lower order term are close to zero, then
we fail to reject the null hypothesis of no gender difference.

F tests allows us to to test joint hypothesis
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The χ2 Distribution

To test more than one hypothesis jointly we need to introduce some new
probability distributions.

Suppose Z1, ...,Zn are n i.i.d. random variables following N (0, 1).

Then, the sum of their squares, X =
∑n

i=1 Z
2
i , is distributed according to the χ2

distribution with n degrees of freedom, X ∼ χ2
n.
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Properties: X > 0, E [X ] = n and V [X ] = 2n. In R: dchisq(), pchisq(), rchisq()
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The F distribution

The F distribution arises as a ratio of two independent chi-squared distributed random
variables:

F =
X1/df1
X2/df2

∼ Fdf1,df2

where X1 ∼ χ2
df1

, X2 ∼ χ2
df2

, and X1⊥⊥X2.

df1 and df2 are called the numerator degrees of freedom and the denominator degrees of
freedom.
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In R: df(), pf(), rf()
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F Test against H0 : γ1 = γ2 = γ3 = 0.

The F statistic can be calculated by the following procedure:

1 Fit the Unrestricted Model (UR) which does not impose H0:

Vote = β0 +γ1FEM +β1EDUC +γ2(FEM ∗EDUC) +β2AGE +γ3(FEM ∗AGE) +u

2 Fit the Restricted Model (R) which does impose H0:

Vote = β0 + β1EDUC + β2AGE + u

3 From the two results, compute the F Statistic:

F0 =
(SSRr − SSRur )/q

SSRur/(n − k − 1)

where SSR=sum of squared residuals, q=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Intuition:

increase in prediction error

original prediction error

The F statistics have the following sampling distributions:

Under Assumptions 1–6, F0 ∼ Fq,n−k−1 regardless of the sample size.

Under Assumptions 1–5, qF0
a.∼ χ2

q as n→∞ (see next section).
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Unrestricted Model (UR)

R Code
> fit.UR <- lm(vote1 ~ fem + educ + age + fem:age + fem:educ, data = Chile)

> summary(fit.UR)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.293130 0.069242 4.233 2.42e-05 ***

fem 0.368975 0.098883 3.731 0.000197 ***

educ -0.038571 0.019578 -1.970 0.048988 *

age 0.005482 0.001114 4.921 9.44e-07 ***

fem:age -0.003779 0.001673 -2.259 0.024010 *

fem:educ -0.044484 0.027697 -1.606 0.108431

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.487 on 1697 degrees of freedom

Multiple R-squared: 0.05451, Adjusted R-squared: 0.05172

F-statistic: 19.57 on 5 and 1697 DF, p-value: < 2.2e-16
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Restricted Model (R)

R Code
> fit.R <- lm(vote1 ~ educ + age, data = Chile)

> summary(fit.R)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4878039 0.0497550 9.804 < 2e-16 ***

educ -0.0662022 0.0139615 -4.742 2.30e-06 ***

age 0.0035783 0.0008385 4.267 2.09e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.4921 on 1700 degrees of freedom

Multiple R-squared: 0.03275, Adjusted R-squared: 0.03161

F-statistic: 28.78 on 2 and 1700 DF, p-value: 5.097e-13
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F Test in R

R Code
> SSR.UR <- sum(resid(fit.UR)^2) # = 402

> SSR.R <- sum(resid(fit.R)^2) # = 411

> DFdenom <- df.residual(fit.UR) # = 1703

> DFnum <- 3

> F <- ((SSR.R - SSR.UR)/DFnum) / (SSR.UR/DFdenom)

> F

[1] 13.01581

> qf(0.99, DFnum, DFdenom)

[1] 3.793171

Given above, what do we conclude?

F0 = 13 is greater than the critical value for a .01 level test. So we reject
the null hypothesis.
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Null Distribution, Critical Value, and Test Statistic
Note that the F statistic is always positive, so we only look at the right tail of the
reference F (or χ2 in a large sample) distribution.
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F Test Examples I

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βkXk + u

We may want to test:
H0 : β1 = β2 = ... = βk = 0

Have any of you used an F-test like this in your research?

This is called the omnibus test and is routinely reported by statistical
software.
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Omnibus Test in R

R Code
> summary(fit.UR)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.293130 0.069242 4.233 2.42e-05 ***

fem 0.368975 0.098883 3.731 0.000197 ***

educ -0.038571 0.019578 -1.970 0.048988 *

age 0.005482 0.001114 4.921 9.44e-07 ***

fem:age -0.003779 0.001673 -2.259 0.024010 *

fem:educ -0.044484 0.027697 -1.606 0.108431

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.487 on 1697 degrees of freedom

Multiple R-squared: 0.05451, Adjusted R-squared: 0.05172

F-statistic: 19.57 on 5 and 1697 DF, p-value: < 2.2e-16
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Omnibus Test in R with Random Noise
R Code

> set.seed(08540)

> p <- 10; x <- matrix(rnorm(p*1000), nrow=1000)

> y <- rnorm(1000); summary(lm(y~x))

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0115475 0.0320874 -0.360 0.7190

x1 -0.0019803 0.0333524 -0.059 0.9527

x2 0.0666275 0.0314087 2.121 0.0341 *

x3 -0.0008594 0.0321270 -0.027 0.9787

x4 0.0051185 0.0333678 0.153 0.8781

x5 0.0136656 0.0322592 0.424 0.6719

x6 0.0102115 0.0332045 0.308 0.7585

x7 -0.0103903 0.0307639 -0.338 0.7356

x8 -0.0401722 0.0318317 -1.262 0.2072

x9 0.0553019 0.0315548 1.753 0.0800 .

x10 0.0410906 0.0319742 1.285 0.1991

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.011 on 989 degrees of freedom

Multiple R-squared: 0.01129, Adjusted R-squared: 0.001294

F-statistic: 1.129 on 10 and 989 DF, p-value: 0.3364
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F Test Examples II

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βkXk + u

Next, let’s consider:
H0 : β1 = β2 = β3

What question are we asking?

→ Are the coefficients X1, X2 and X3 different from each other?

How many restrictions?

→ Two (β1 − β2 = 0 and β2 − β3 = 0)

How do we fit the restricted model?

→ The null hypothesis implies that the model can be written as:

Y = β0 + β1(X1 + X2 + X3) + ...+ βkXk + u

So we create a new variable X ∗ = X1 + X2 + X3 and fit:

Y = β0 + β1X
∗ + ...+ βkXk + u
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Testing Equality of Coefficients in R

R Code
> fit.UR2 <- lm(REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd, data = D)

> summary(fit.UR2)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1899.9 914.9 2.077 0.0410 *

Asia 2701.7 1243.0 2.173 0.0327 *

LatAmerica 2281.5 1112.3 2.051 0.0435 *

Transit 2552.8 1204.5 2.119 0.0372 *

Oecd 12224.2 1112.3 10.990 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3034 on 80 degrees of freedom

Multiple R-squared: 0.7096, Adjusted R-squared: 0.6951

F-statistic: 48.88 on 4 and 80 DF, p-value: < 2.2e-16

Are the coefficients on Asia, LatAmerica and Transit statistically
significantly different?
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Testing Equality of Coefficients in R
R Code

> D$Xstar <- D$Asia + D$LatAmerica + D$Transit

> fit.R2 <- lm(REALGDPCAP ~ Xstar + Oecd, data = D)

> SSR.UR2 <- sum(resid(fit.UR2)^2)

> SSR.R2 <- sum(resid(fit.R2)^2)

> DFdenom <- df.residual(fit.UR2)

> F <- ((SSR.R2 - SSR.UR2)/2) / (SSR.UR2/DFdenom)

> F

[1] 0.08786129

> pf(F, 2, DFdenom, lower.tail = F)

[1] 0.9159762

So, what do we conclude?

The three coefficients are statistically indistinguishable from each other,
with the p-value of 0.916.
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t Test vs. F Test
Consider the hypothesis test of

H0 : β1 = β2 vs. H1 : β1 6= β2

What ways have we learned to conduct this test?

Option 1: Compute T = (β̂1 − β̂2)/ŜE (β̂1 − β̂2) and do the t test.

Option 2: Create X ∗ = X1 + X2, fit the restricted model, compute
F = (SSRR − SSRUR)

/
(SSRR/(n − k − 1)) and do the F test.

It turns out these two tests give identical results. This is because

X ∼ tn−k−1 ⇐⇒ X 2 ∼ F1,n−k−1

So, for testing a single hypothesis it does not matter whether one does a t
test or an F test.

Usually, the t test is used for single hypotheses and the F test is used for
joint hypotheses.
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Some More Notes on F Tests

The F-value can also be calculated from R2:

F =
(R2

UR − R2
R)/q

(1− R2
UR)/(n − k − 1)

F tests only work for testing nested models, i.e. the restricted model must
be a special case of the unrestricted model.

For example F tests cannot be used to test

Y = β0 + β1X1

+ β2X2

+ β3X3 + u

against
Y = β0 + β1X1 + β2X2 +

β3X3

+ u
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Some More Notes on F Tests

Joint significance does not necessarily imply the significance of individual
coefficients, or vice versa:Finite-Sample Properties of OLS 45

Figure 1.5: t- versus F -Tests

An Example of a Test Statistic Whose Distribution Depends on XXX
To place the discussion of this section in a proper perspective, it may be useful
to note that there are some statistics whose conditional distribution depends on X.
Consider the celebrated Durbin-Watson statistic:

∑n
i=2(ei − ei−1)2∑n

i=1 e2i
.

The conditional distribution, and hence the critical values, of this statistic depend
on X, but J. Durbin and G. S. Watson have shown that the critical values fall
between two bounds (which depends on the sample size, the number of regres-
sors, and whether the regressor includes a constant). Therefore, the critical values
for the unconditional distribution, too, fall between these bounds.

The statistic is designed for testing whether there is no serial correlation in
the error term. Thus, the null hypothesis is Assumption 1.4, while the maintained
hypothesis is the other assumptions of the classical regression model (including the
strict exogeneity assumption) and the normality assumption. But, as emphasized
in Section 1.1, the strict exogeneity assumption is not satisfied in time-series mod-
els typically encountered in econometrics, and serial correlation is an issue that
arises only in time-series models. Thus, the Durbin-Watson statistic is not useful
in econometrics. More useful tests for serial correlation, which are all based on
large-sample theory, will be covered in the next chapter.

Image Credit: Hayashi (2011) Econometrics
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Goal Check: Understand lm() Output

Call:

lm(formula = sr ~ pop15, data = LifeCycleSavings)

Residuals:

Min 1Q Median 3Q Max

-8.637 -2.374 0.349 2.022 11.155

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.49660 2.27972 7.675 6.85e-10 ***

pop15 -0.22302 0.06291 -3.545 0.000887 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.03 on 48 degrees of freedom

Multiple R-squared: 0.2075,Adjusted R-squared: 0.191

F-statistic: 12.57 on 1 and 48 DF, p-value: 0.0008866
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This Week in Review

You now have seen the full linear regression model!

Multiple regression is much like the regression formulations we have
already seen.

We showed how to estimate the coefficients and get the variance
covariance matrix.

You can also calculate robust standard errors which provide a plug
and play replacement.

Much of the hypothesis test infrastructure ports over nicely, plus
there are new joint tests we can use.

Next week: Troubleshooting the Linear Model!
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