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Where We've Been and Where We're Going...

@ Last Week

» multiple regression
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Where We've Been and Where We're Going...

Last Week
» multiple regression
This Week
» diagnosing problems and troubleshooting the linear model
» unusual and influential data — robust estimation
> non-linearity — generalized additive models
» unusual errors — sandwich SEs
Next Week
» frameworks for causal inference
Long Run
> probability — inference — regression — causal inference
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@ Thinking About Problems
© Non-Normality

© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points

@ Robust Regression Methods
@ Appendix: Robustness

© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models

@ Clustering
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@ Thinking About Problems
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Pulling Back the Curtain

@ There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.
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Pulling Back the Curtain

@ There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

@ We skew a bit more towards the latter, because most people won't
continue to study methods long term—I want your knowledge to stay
current as long as possible!
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simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.
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Pulling Back the Curtain

@ There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

@ We skew a bit more towards the latter, because most people won't
continue to study methods long term—I want your knowledge to stay
current as long as possible!

@ Towards the beginning of the course there is a lot of material that is
simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.

@ This week we will talk about how to diagnose and fix problems which
is naturally a pretty context-specific activity.

@ Today is setting the table for how we think about that problem. |
think this is philosophically interesting and you may want to revisit at
the end of the week.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 4/127



Five Themes
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Five Themes

1) Clearly define your goal.
2) Examine your model.

(1)
(2)
(3) Diagnosis through treatment.
(4) Don't expect a free lunch.
(5)

Re-examine defaults.
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(1) Clearly Define Your Goal

Stewart (Princeton) Week 8: Diagnostics and Solutions



(1) Clearly Define Your Goal

@ Best practices are rarely best for all applications, people generally
have a distribution of applications in mind when they give advice so
best to be specific about your application.
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‘biased with respect to what?’
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have a distribution of applications in mind when they give advice so
best to be specific about your application.

@ When thinking about whether an estimator is biased, always think
‘biased with respect to what?’

@ Predictive generalization is one unifying way to solve questions about
what is best (particularly in machine learning).
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(1) Clearly Define Your Goal

@ Best practices are rarely best for all applications, people generally
have a distribution of applications in mind when they give advice so
best to be specific about your application.

@ When thinking about whether an estimator is biased, always think
‘biased with respect to what?’

@ Predictive generalization is one unifying way to solve questions about
what is best (particularly in machine learning).

@ You may not know how to precisely define your goal yet (last few
weeks are about causal goals). That's okay!
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(2) Examine Your Model
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(2) Examine Your Model

Residuals are important. Look at them.
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(2) Examine Your Model

@ There are so many ways that something can go wrong, particularly
when you don't know every nuance of the data.
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@ Examining the model helps us detect cases where assumptions have
failed to hold or data is contaminated.
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@ There are so many ways that something can go wrong, particularly
when you don't know every nuance of the data.

@ Examining the model helps us detect cases where assumptions have
failed to hold or data is contaminated.

@ A challenge is that this formally disrupts most inference infrastructure
which assumes you fix models a priori and only do one test.
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@ There are so many ways that something can go wrong, particularly
when you don't know every nuance of the data.

@ Examining the model helps us detect cases where assumptions have
failed to hold or data is contaminated.

@ A challenge is that this formally disrupts most inference infrastructure
which assumes you fix models a priori and only do one test.

@ Double checking that that things haven't gone horribly wrong is most
likely okay, but there is always a slippery slope argument that leads to
what Gelman calls the ‘garden of forking paths.’
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when you don't know every nuance of the data.

Examining the model helps us detect cases where assumptions have
failed to hold or data is contaminated.

@ A challenge is that this formally disrupts most inference infrastructure
which assumes you fix models a priori and only do one test.

@ Double checking that that things haven't gone horribly wrong is most

likely okay, but there is always a slippery slope argument that leads to
what Gelman calls the ‘garden of forking paths.’

There is always an inherent risk in looking at the data more than
once. ‘Double dipping’ can be a serious problem.
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(2) Examine Your Model

There are so many ways that something can go wrong, particularly
when you don't know every nuance of the data.

Examining the model helps us detect cases where assumptions have
failed to hold or data is contaminated.

@ A challenge is that this formally disrupts most inference infrastructure
which assumes you fix models a priori and only do one test.

@ Double checking that that things haven't gone horribly wrong is most

likely okay, but there is always a slippery slope argument that leads to
what Gelman calls the ‘garden of forking paths.’

There is always an inherent risk in looking at the data more than
once. ‘Double dipping’ can be a serious problem.

@ One way out of this we won't discuss is train-test splits.
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(3) Diagnosis Through Treatment
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(3) Diagnosis Through Treatment

@ When diagnosing problems it can often be hard to tell how
consequential they are.
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(3) Diagnosis Through Treatment

@ When diagnosing problems it can often be hard to tell how
consequential they are.

@ One strategy is diagnosis through treatment, i.e. we just use a
procedure that would address the problem and see if it changes our
conclusions rather than diagnosing in the first place.
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@ We will use this strategy to replace formal diagnostics in a few
different places this week.
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consequential they are.

@ One strategy is diagnosis through treatment, i.e. we just use a
procedure that would address the problem and see if it changes our
conclusions rather than diagnosing in the first place.

@ We will use this strategy to replace formal diagnostics in a few
different places this week.

@ The downside to this approach is that sometimes you end up less
clear about what the problem was in the first place.
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(3) Diagnosis Through Treatment

@ When diagnosing problems it can often be hard to tell how
consequential they are.
@ One strategy is diagnosis through treatment, i.e. we just use a

procedure that would address the problem and see if it changes our
conclusions rather than diagnosing in the first place.

@ We will use this strategy to replace formal diagnostics in a few
different places this week.

@ The downside to this approach is that sometimes you end up less
clear about what the problem was in the first place.

We will talk about successes of this approach but also some
catastrophic failures.
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(4) Don't Expect a Free Lunch
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(4) Don't Expect a Free Lunch

@ Most things | show you will have tradeoffs.
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(4) Don't Expect a Free Lunch

@ Most things | show you will have tradeoffs.

@ This shouldn't be a surprise—if we had a procedure that uniformly
dominated all others | wouldn't show you options, I'd just show you

the one.
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(4) Don't Expect a Free Lunch

@ Most things | show you will have tradeoffs.
@ This shouldn't be a surprise—if we had a procedure that uniformly
dominated all others | wouldn't show you options, I'd just show you

the one.
@ Common tradeoffs include:
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(4) Don't Expect a Free Lunch

@ Most things | show you will have tradeoffs.

@ This shouldn't be a surprise—if we had a procedure that uniformly
dominated all others | wouldn't show you options, I'd just show you
the one.

@ Common tradeoffs include:

> bias vs. variance
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(4) Don't Expect a Free Lunch

@ Most things | show you will have tradeoffs.

@ This shouldn't be a surprise—if we had a procedure that uniformly
dominated all others | wouldn't show you options, I'd just show you
the one.

@ Common tradeoffs include:

> bias vs. variance
> interpretability vs. flexibility
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(4) Don't Expect a Free Lunch

@ Most things | show you will have tradeoffs.

@ This shouldn't be a surprise—if we had a procedure that uniformly
dominated all others | wouldn't show you options, I'd just show you
the one.

@ Common tradeoffs include:

» bias vs. variance
> interpretability vs. flexibility
» data dependence vs. assumption dependence
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(5) Re-Examine Defaults
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(5) Re-Examine Defaults

@ In many ways statistics is the science of defaults.
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@ Defaults are hugely important because people rarely change defaults.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 11/127



(5) Re-Examine Defaults

@ In many ways statistics is the science of defaults.
@ Defaults are hugely important because people rarely change defaults.

@ For example, arguably we all use classical standard errors because
that's what 1m() produces. This is way packages like estimatr use
robust standard errors by default.
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(5) Re-Examine Defaults

@ In many ways statistics is the science of defaults.
@ Defaults are hugely important because people rarely change defaults.

@ For example, arguably we all use classical standard errors because
that's what 1m() produces. This is way packages like estimatr use
robust standard errors by default.

@ But remember, different solutions are better for different
settings—defaults are a function of their time and context.
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(5) Re-Examine Defaults

In many ways statistics is the science of defaults.

Defaults are hugely important because people rarely change defaults.

For example, arguably we all use classical standard errors because
that's what 1m() produces. This is way packages like estimatr use
robust standard errors by default.

But remember, different solutions are better for different
settings—defaults are a function of their time and context.

The history of 20th century social science is defined by scarcity—data
was hard to find, surveys were costly to field, computing resources
were expensive and difficult to access. The methods we use are a
consequence of that scarcity.
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(5) Re-Examine Defaults

In many ways statistics is the science of defaults.

Defaults are hugely important because people rarely change defaults.

For example, arguably we all use classical standard errors because
that's what 1m() produces. This is way packages like estimatr use
robust standard errors by default.

But remember, different solutions are better for different
settings—defaults are a function of their time and context.

The history of 20th century social science is defined by scarcity—data
was hard to find, surveys were costly to field, computing resources
were expensive and difficult to access. The methods we use are a
consequence of that scarcity.

But now we have abundance—new forms of data, cheap surveys,
huge computation! It is changing the methods we consider.
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@ Non-Normal Errors
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Topics We Will Cover

@ Non-Normal Errors
@ Extreme Values

@ Robust Regression
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Topics We Will Cover

Non-Normal Errors
Extreme Values

Robust Regression

Non-linearity
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Topics We Will Cover

Non-Normal Errors
Extreme Values

Robust Regression

Non-linearity

Clustering

Regrettably we won't have time to cover two important areas: missing
data and sensitivity analysis.
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We Covered
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We Covered

@ Five themes for thinking about problems.

Stewart (Princeton) Week 8: Diagnostics and Solutions



We Covered

@ Five themes for thinking about problems.

Next Time: Non-normal Errors!
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Where We've Been and Where We're Going...

Last Week
» multiple regression
This Week
» diagnosing problems and troubleshooting the linear model
» unusual and influential data — robust estimation
> non-linearity — generalized additive models
» unusual errors — sandwich SEs
Next Week
» frameworks for causal inference
Long Run
> probability — inference — regression — causal inference
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@ Thinking About Problems
© Non-Normality

© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points

@ Robust Regression Methods
@ Appendix: Robustness

© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models

@ Clustering
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e Non-Normality
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Review of the Normality assumption

@ In matrix notation:
ulX ~ N(0,021)
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Review of the Normality assumption

@ In matrix notation:
ulX ~ N(0,021)

o Equivalent to:
U,'lXi- ~ N(O7 ULZJ)
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Review of the Normality assumption

@ In matrix notation:
ulX ~ N(0,021)

o Equivalent to:
UilX:- ~ N(()? ULZJ)

e Fix xj. and the distribution of errors are Normal.
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Consequences of non-Normal Errors?

@ In small samples:
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@ In small samples:
» Sampling distribution of 3 will not be Normal
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» Test statistics will not have t or F distributions
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» Sampling distribution of B will not be Normal
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» Probability of Type | error will not be «
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Consequences of non-Normal Errors?

@ In small samples:
Sampling distribution of 3 will not be Normal

>

> Test statistics will not have t or F distributions

» Probability of Type | error will not be «

» 1 — « confidence interval will not have 1 — a coverage
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@ In large samples:
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Consequences of non-Normal Errors?

@ In small samples:

» Sampling distribution of B will not be Normal

» Test statistics will not have t or F distributions
Probability of Type | error will not be «
» 1 — « confidence interval will not have 1 — a coverage

v

@ In large samples:
» Sampling distribution of 3 ~ Normal by the CLT
» Test statistics will be &~ t or F by the CLT
» Probability of Type | error =~ «
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» Sampling distribution of B will not be Normal

> Test statistics will not have t or F distributions
Probability of Type | error will not be «

» 1 — « confidence interval will not have 1 — a coverage

v

@ In large samples:
» Sampling distribution of ,§ ~ Normal by the CLT
» Test statistics will be &~ t or F by the CLT
» Probability of Type | error =~ «
» 1 — « confidence interval will have =~ 1 — a/ coverage
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Consequences of non-Normal Errors?

@ In small samples:

v

Sampling distribution of B\ will not be Normal

> Test statistics will not have t or F distributions

» Probability of Type | error will not be «

» 1 — « confidence interval will not have 1 — a coverage

@ In large samples:
» Sampling distribution of ,é\ ~ Normal by the CLT
» Test statistics will be &~ t or F by the CLT
» Probability of Type | error =~ «
» 1 — « confidence interval will have =~ 1 — a/ coverage
@ The sample size (n) needed for approximation to hold depends on
how far the errors are from Normal.
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Consequences of non-Normal Errors?

@ In small samples:
» Sampling distribution of 3 will not be Normal
> Test statistics will not have t or F distributions
> Probability of Type | error will not be «
» 1 — « confidence interval will not have 1 — a coverage
@ In large samples:
» Sampling distribution of 3 ~ Normal by the CLT
» Test statistics will be &~ t or F by the CLT
» Probability of Type | error =~ «
» 1 — « confidence interval will have =~ 1 — a/ coverage
@ The sample size (n) needed for approximation to hold depends on
how far the errors are from Normal.
@ Reasonable question: if we have enough data are non-normal errors

even a problem?
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Clarifying a Point of Confusion: Marginal versus
Conditional

@ Be careful with this assumption: distribution of the error, not the
distribution of the outcome is the key assumption
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Clarifying a Point of Confusion: Marginal versus
Conditional

@ Be careful with this assumption: distribution of the error, not the
distribution of the outcome is the key assumption

@ The marginal distribution of y can be non-Normal even if the
conditional distribution is Normal!
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Clarifying a Point of Confusion: Marginal versus
Conditional

@ Be careful with this assumption: distribution of the error, not the
distribution of the outcome is the key assumption

@ The marginal distribution of y can be non-Normal even if the
conditional distribution is Normal!

@ The plausibility depends on the X chosen by the researcher.
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Example: Is this a Violation?
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Example: Is this a Violation?

0
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How to Diagnose?

@ Assumption is about unobserved errors u =y — X3
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How to Diagnose?

@ Assumption is about unobserved errors u =y — X3

@ We can only observe residuals, u =y — X3
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How to Diagnose?

@ Assumption is about unobserved errors u =y — X3
@ We can only observe residuals, u =y — XB

o If distribution of residuals = distribution of errors, we could check
residuals as a proxy for the errors.
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How to Diagnose?

@ Assumption is about unobserved errors u =y — X3
@ We can only observe residuals, u =y — XB

o If distribution of residuals = distribution of errors, we could check
residuals as a proxy for the errors.

@ Unfortunately, this is not true—the distribution of the residuals is
more complicated
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How to Diagnose?

@ Assumption is about unobserved errors u =y — X3
@ We can only observe residuals, u =y — XB

o If distribution of residuals = distribution of errors, we could check
residuals as a proxy for the errors.

@ Unfortunately, this is not true—the distribution of the residuals is
more complicated

Solution: Carefully investigate the residuals numerically and graphically.
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How to Diagnose?

@ Assumption is about unobserved errors u =y — X3
@ We can only observe residuals, u =y — XB

o If distribution of residuals a distribution of errors, we could check
residuals as a proxy for the errors.

@ Unfortunately, this is not true—the distribution of the residuals is
more complicated

Solution: Carefully investigate the residuals numerically and graphically.

To understand the relationship between residuals and errors, we need to
derive the distribution of the residuals (which we will do over the next few
slides).
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Defining the Hat Matrix
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Defining the Hat Matrix

o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.
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Defining the Hat Matrix

o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.
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Defining the Hat Matrix

o We want to figure out how the distribution of errors u relates to the

distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

i=y- X3
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Defining the Hat Matrix

o We want to figure out how the distribution of errors u relates to the

distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

u=y—X,§
—y—X(X'x) Xy
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Defining the Hat Matrix

o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

y - X3
y — X (X'X)
y — Hy

u

-1

X'y
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Defining the Hat Matrix
o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

=y-X3
—y— X (X'x) "Xy
=y—Hy

(I-Hy
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Defining the Hat Matrix
o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

=y-X3
—y— X (X'x) "Xy
= y Hy

o H =X (XX)"' X is the hat matrix because it puts the “hat” on y:
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Defining the Hat Matrix
o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

i=y-—Xp
—y— X (X'x) "Xy
Ey Hy

o H =X (XX)"' X is the hat matrix because it puts the “hat” on y:

y = Hy

it has a few nice properties:
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Defining the Hat Matrix
o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

i=y-—Xp
—y— X (X'x) "Xy
Ey Hy

o H =X (XX)"' X is the hat matrix because it puts the “hat” on y:

y = Hy

it has a few nice properties:
» H is an n X n symmetric matrix
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Defining the Hat Matrix
o We want to figure out how the distribution of errors u relates to the
distribution of residuals u.

@ To get there let's write U in terms of y, then we will be able to
replace y with X3 + u.

i=y-—Xp
—y— X (X'x) "Xy
Ey Hy

o H =X (XX)"' X is the hat matrix because it puts the “hat” on y:

y = Hy

it has a few nice properties:

» H is an n X n symmetric matrix
» H is idempotent: HH=H
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.

u=(1-H)y)
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.

W= (1- H)(y)
=(I—H)(X3+u)
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.

u=(I-H)y)
= (1— H)(XB +u)
= (I1—=H)XB + (1 H)u
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Relating the Residuals to the Errors
With the hat matrix, we are ready to relate the residuals to the errors.
u=(I-H)y)
=(I—H)(X3+u)
=(1-H)XB+ (I -H)u
—IXB — X (X'X) " X'’XB + (1 — H)u
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.
u=(I-H)y)
=(I—H)(X3+u)
=(1-H)XB+ (I -H)u
—IXB — X (X'X) " X'’XB + (1 — H)u
=XB—-XB+ (I —H)u
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.

u=(I-H)(y)
= (I—H)(XB +u)
= (1—-H)XB + (1 — H)u
—IXB — X (X'X) " X'’XB + (1 — H)u
— X8 —XB + (1 — H)u
= (1 —H)u
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.
u=(I-H)y)
=(I—H)(X3+u)
=(1-H)XB+ (I -H)u
—IXB — X (X'X) " X'XB+ (1 - H)u
=XB—-XB+ (I —H)u
= (1 —H)u

@ Residuals u are a linear function of the errors, u.
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.

u=(I-H)(y)
= (I—H)(XB +u)
= (1—-H)XB + (1 — H)u
—IXB — X (X'X) " X'XB+ (1 - H)u
— X8 —XB + (1 — H)u
= (1 —H)u

@ Residuals u are a linear function of the errors, u.

@ For instance,

up = (1—hi1)ug — Z hiju;
i—2
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.

u=(I-H)y)
= (I— H)(XB + u)
= (I-H)XB+ (1— H)u
—IXB — X (X'X) " X'XB+ (1 - H)u
— XB - XB+ (1-H)u
=(I—H)u

@ Residuals u are a linear function of the errors, u.
@ For instance,
n
up = (1—hi1)ug — E hiju;
i=2

@ Note that each residual is a function of all of the errors.
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Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: u = (I — H)u.
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Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: u = (I — H)u.

E[6] =
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Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: u = (I — H)u.

Efu] = (I - H)E[u] =

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 23 /127



Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: u = (I — H)u.

EfG] = (1 — H)E[u] = 0
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Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: u = (I — H)u.

EfG] = (1 — H)E[u] = 0
V[i] =

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 23 /127



Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: u = (I — H)u.

EfG] = (1 — H)E[u] = 0
Via] = o2(1 - H)
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Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: u = (I — H)u.

EfG] = (1 — H)E[u] = 0
Via] = o2(1 - H)

The variance of the ith residual 0; is V[i;] = 0%(1 — h;;), where hj; is the
ith diagonal element of the matrix H (called the hat value).
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Properties of the Distribution of Residuals
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Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They
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Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

© are not independent
(because they must satisfy the two constraints » 7, t; = 0 and

> ey Uixi = 0)
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Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

© are not independent
(because they must satisfy the two constraints » 7, t; = 0 and
> i1 Uixi = 0)
@ do not have the same variance.
The variance of the residuals varies across data points
V[0;] = o%(1 — hj;), even though the unobserved errors all have the
same variance o2
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Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They
© are not independent
(because they must satisfy the two constraints » 7, t; = 0 and
> i1 Uixi = 0)
@ do not have the same variance.
The variance of the residuals varies across data points
V[d;] = o?(1 — hj;), even though the unobserved errors all have the
same variance o2
These properties make it hard to learn about the errors (which our
assumptions are about and we don't have access to) from our residuals
(which we have estimated and can examine).
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Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

© are not independent
(because they must satisfy the two constraints » 7, t; = 0 and
> i1 Uix; = 0)

@ do not have the same variance.
The variance of the residuals varies across data points

V[d;] = o?(1 — hj;), even though the unobserved errors all have the
same variance o

These properties make it hard to learn about the errors (which our
assumptions are about and we don't have access to) from our residuals
(which we have estimated and can examine).

This is inconvenient for diagnostics.
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Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

© are not independent
(because they must satisfy the two constraints » 7, t; = 0 and
> i1 Uixi = 0)
@ do not have the same variance.
The variance of the residuals varies across data points
V[d;] = o?(1 — hj;), even though the unobserved errors all have the
same variance o2

These properties make it hard to learn about the errors (which our
assumptions are about and we don't have access to) from our residuals
(which we have estimated and can examine).

This is inconvenient for diagnostics.

What if we could transform the residuals to address the two issues above?
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Standardized Residuals
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Standardized Residuals

Let’s address the second problem (unequal variances) by standardizing 4,
i.e., dividing by unit /'s estimated standard deviation.
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Standardized Residuals

Let’s address the second problem (unequal variances) by standardizing 4,

i.e., dividing by unit /'s estimated standard deviation.

This produces standardized (or “internally studentized”) residuals:

R
" 61— hj
~ ~ ~ YT - .
where & = V42 and 62 = % is our usual estimate of the error
variance.
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Standardized Residuals

Let’s address the second problem (unequal variances) by standardizing 4,
i.e., dividing by unit /'s estimated standard deviation.

This produces standardized (or “internally studentized”) residuals:

ﬁ.
N i
i =

" 61— hj
~ ~ ~ YT - .
where & = V42 and 62 = % is our usual estimate of the error
variance.

The standardized residuals are still not ideal, since the numerator and
denominator of i/ are not independent. This makes the distribution of &
nonstandard. If the distribution is non-standard, we can't easily check for
violations.
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Studentized Residuals
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Studentized Residuals

If we remove observation i from the estimation of o2, then we can
eliminate the dependence and the result will have a standard distribution.
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Studentized Residuals

If we remove observation i from the estimation of o2, then we can
eliminate the dependence and the result will have a standard distribution.

@ estimate error variance without residual i:

~2 u'u — a7 /(1 — hi)
- n—k—2
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Studentized Residuals

If we remove observation i from the estimation of o2, then we can
eliminate the dependence and the result will have a standard distribution.

@ estimate error variance without residual i:

L, wa- a2/ hy)
-! n—k-—2

@ Use this i-free estimate to standardize, which creates the studentized

residuals: R
Y Ui

T VIR
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Studentized Residuals

If we remove observation i from the estimation of o2, then we can
eliminate the dependence and the result will have a standard distribution.

@ estimate error variance without residual i:

o — 2 _
62 uu U/( )

- n—k-—2

@ Use this i-free estimate to standardize, which creates the studentized
residuals:

~

e uj

Up = =——F7/——F
o_ivV1— hj
o If the errors are Normal, the studentized residuals, u}, follow a t
distribution with (n — k — 2) degrees of freedom.
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Studentized Residuals

If we remove observation i from the estimation of o2, then we can
eliminate the dependence and the result will have a standard distribution.

@ estimate error variance without residual i:

o — 2 _
6_\2 uu U/( )

- n—k-—2

@ Use this i-free estimate to standardize, which creates the studentized
residuals:

~

e uj

U,' = T
o_ivV1— hj
o If the errors are Normal, the studentized residuals, u}, follow a t
distribution with (n — k — 2) degrees of freedom.

@ Deviations from this t distribution of the residuals imply violation of
Normality in the errors.
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Example: Buchanan votes in Florida, 2000
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Example: Buchanan votes in Florida, 2000

Wand et al. show that the ballot caused 2,000 Democratic voters to vote
by mistake for Buchanan, a number more than enough to have tipped the
vote in FL from Bush to Gore, thus giving him FL's 25 electoral votes and
the presidency.

American Political Science Review Vol. 95, No. 4 December 2001

The Butterfly Did It: The Aberrant Vote for Buchanan in Paim Beach
County, Florida

JONATHAN N. WAND Cornell University

KENNETH W. SHOTTS Northwestern University

JASJEET S. SEKHON Harvard University

WALTER R. MEBANE, JR. Cornell University

MICHAEL C. HERRON Northwestern University

HENRY E. BRADY University of California, Berkeley

e show that the butterfly ballot used in Palm Beach County, Florida, in the 2000 presidential

election caused more than 2,000 Democratic voters to vote by mistake for Reform candidate Pat

Buchanan, a number larger than George W. Bush’s certified margin of victory in Florida. We use
multiple methods and several kinds of data to rule out alternative explanations for the votes Buchanan
received in Palm Beach County. Among 3,053 U.S. counties where Buchanan was on the ballot, Palm
Beach County has the most anomalous excess of votes for him. In Palm Beach County, Buchanan’s
proportion of the vote on election-day ballots is four times larger than his proportion on absentee
(nonbutterfly) ballots, but Buchanan’s proportion does not differ significantly between election-day and
absentee ballots in any other Florida county. Unlike other Reform candidates in Palm Beach County,
Buchanan tended to receive election-day votes in Democratic precmcts and from mdzvzdualx who voted for
the Democratic U.S. Senate didate. Robust esti) of p ion models
underpins much of the analysis.
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Example: Buchanan votes in Florida, 2000

Wand et al. show that the ballot caused 2,000 Democratic voters to vote
by mistake for Buchanan, a number more than enough to have tipped the

vote in FL from Bush to Gore, thus giving him FL's 25 electoral votes and
the presidency.

FIGURE 1. The Palm Beach County Bufferfly Ballot
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GEORGE W. BUSH . racsioonr IREFORM)
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Example: Buchanan votes in Florida, 2000

Buchanan Votes
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Example: Buchanan Votes in Florida
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Example: Buchanan Votes in Florida

@ Now that our studentized residuals follow a known standard
distribution, we can proceed with diagnostic analysis for the
nonnormal errors.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 29 /127



Example: Buchanan Votes in Florida

@ Now that our studentized residuals follow a known standard
distribution, we can proceed with diagnostic analysis for the
nonnormal errors.

@ We examine data from the 2000 presidential election in Florida used
in Wand et al. (2001).
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Example: Buchanan Votes in Florida

@ Now that our studentized residuals follow a known standard
distribution, we can proceed with diagnostic analysis for the
nonnormal errors.

@ We examine data from the 2000 presidential election in Florida used
in Wand et al. (2001).

@ Our analysis takes place at the county level and we will regress the
number of Buchanan votes in each county on the total number of
votes in each county.
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Buchanan Votes and Total Votes
R Code

> modl <- 1m(buchanan00~TotalVotes00,data=dta)
> summary (mod1)
Residuals:

Min 1Q Median 3Q Max
-947.05 -41.74 -19.47 20.20 2350.54

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.423e+01 4.914e+01 1.104 0.274
TotalVotes00 2.323e-03 3.104e-04 T7.483 2.42e-10 **x*

Residual standard error: 332.7 on 65 degrees of freedom

Multiple R-squared: 0.4628, Adjusted R-squared: 0.4545
F-statistic: 56 on 1 and 65 DF, p-value: 2.417e-10

> residuals <- resid(modil)

> standardized_residuals <- rstandard(modil)

> studentized_residuals <- rstudent(modl)

> dotchart (residuals,dta$name,cex=.7,xlab="Residuals")
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Plotting the residuals
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Plotting the residuals
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Plotting the residuals
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Quantile-Quantile plots

@ How can we easily compare our actual distribution of residuals to the
theoretical distribution?
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Quantile-Quantile plots

@ How can we easily compare our actual distribution of residuals to the
theoretical distribution?

@ Quantile-quantile plot or QQ-plot is useful for comparing distributions
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Quantile-Quantile plots

@ How can we easily compare our actual distribution of residuals to the
theoretical distribution?

@ Quantile-quantile plot or QQ-plot is useful for comparing distributions

@ Plots the quantiles of one distribution against those of another
distribution
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Quantile-Quantile plots

@ How can we easily compare our actual distribution of residuals to the
theoretical distribution?

@ Quantile-quantile plot or QQ-plot is useful for comparing distributions

@ Plots the quantiles of one distribution against those of another
distribution

@ For example, one point is the (my, m,) where m, is the median of the
x distribution and m, is the median for the y distribution
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Quantile-Quantile plots

@ How can we easily compare our actual distribution of residuals to the
theoretical distribution?

Quantile-quantile plot or QQ-plot is useful for comparing distributions

Plots the quantiles of one distribution against those of another
distribution

For example, one point is the (my, m,) where m, is the median of the
x distribution and m, is the median for the y distribution

If distributions are equal = 45 degree line
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Good QQ-plot

t quantiles
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Buchanan QQ-plot
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How Can we Deal with non-Normal Errors?
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How Can we Deal with non-Normal Errors?

@ Drop or change problematic observations (could be a bad idea unless you
have some reason to believe the data are wrong or corrupted)
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How Can we Deal with non-Normal Errors?

@ Drop or change problematic observations (could be a bad idea unless you
have some reason to believe the data are wrong or corrupted)

@ Add variables to X (remember that the errors are defined in terms of
explanatory variables)
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How Can we Deal with non-Normal Errors?

@ Drop or change problematic observations (could be a bad idea unless you
have some reason to believe the data are wrong or corrupted)

@ Add variables to X (remember that the errors are defined in terms of
explanatory variables)

@ Use transformations (this may work, but a transformation affects all the
assumptions of the model)
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How Can we Deal with non-Normal Errors?

@ Drop or change problematic observations (could be a bad idea unless you
have some reason to believe the data are wrong or corrupted)

@ Add variables to X (remember that the errors are defined in terms of
explanatory variables)

@ Use transformations (this may work, but a transformation affects all the
assumptions of the model)

@ Use estimators other than OLS that are robust to nonnormality (two videos
from now!)
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Buchanan Revisited

Let's delete Palm Beach and also use log transformations for both variables

##
##
##
##
##
##
##
##
##
##
##

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -2.48597 0.37889 -6.561 1.09e-08 *x*x
log(edaytotal) 0.70311 0.03621 19.417 < 2e-16 *x*x

Signif. codes: 0 ’#x*’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.” 0.1 > > 1
Residual standard error: 0.4362 on 64 degrees of freedom

Multiple R-squared: 0.8549, Adjusted R-squared: 0.8526
F-statistic: 377 on 1 and 64 DF, p-value: < 2.2e-16
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Buchanan Revisited

Histogram of resids.nopb Histogram of stand.resids.nopb
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Buchanan Revisited
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A Note of Caution About Log Transformations

@ Log transformations are a standard approach in the literature and
intro regression classes
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A Note of Caution About Log Transformations

@ Log transformations are a standard approach in the literature and
intro regression classes

@ They are extremely helpful for data that is skewed (e.g. a few very
large positive values)
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A Note of Caution About Log Transformations

o Log transformations are a standard approach in the literature and
intro regression classes

@ They are extremely helpful for data that is skewed (e.g. a few very
large positive values)

@ Generally you want to convert these findings back to the original scale
for interpretation
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A Note of Caution About Log Transformations

@ Log transformations are a standard approach in the literature and
intro regression classes

@ They are extremely helpful for data that is skewed (e.g. a few very
large positive values)

@ Generally you want to convert these findings back to the original scale
for interpretation

@ Remember the complexities of log transforms from Week 5!
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We Covered
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We Covered

@ Non-Normal Data
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We Covered

@ Non-Normal Data
@ Hat Matrix
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We Covered

@ Non-Normal Data
@ Hat Matrix

@ Transforming Residuals
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We Covered

@ Non-Normal Data
@ Hat Matrix

@ Transforming Residuals

Next Time: Extreme Values
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Where We've Been and Where We're Going...

Last Week
» multiple regression
This Week
» diagnosing problems and troubleshooting the linear model
» unusual and influential data — robust estimation
> non-linearity — generalized additive models
» unusual errors — sandwich SEs
Next Week
» frameworks for causal inference
Long Run
> probability — inference — regression — causal inference
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@ Thinking About Problems
© Non-Normality

© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points

@ Robust Regression Methods
@ Appendix: Robustness

© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models

@ Clustering
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© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points
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The Trouble with Norway
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The Trouble with Norway

@ Lange and Garrett (1985): organizational and political power of labor
interact to improve economic growth
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The Trouble with Norway

@ Lange and Garrett (1985): organizational and political power of labor
interact to improve economic growth

e Jackman (1987): relationship just due to North Sea Oil?
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The Trouble with Norway

o Lange and Garrett (1985): organizational and political power of labor
interact to improve economic growth
e Jackman (1987): relationship just due to North Sea Oil?
o Table guide:
» x; = organizational power of labor

» x, = political power of labor
» Parentheses contain t-statistics
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The Trouble with Norway

o Lange and Garrett (1985): organizational and political power of labor
interact to improve economic growth

e Jackman (1987): relationship just due to North Sea Oil?
o Table guide:

» x; = organizational power of labor
» x, = political power of labor
» Parentheses contain t-statistics

Constant X1 X2 X1+ Xo

Norway Obs Included .814 -.192 -278 137
(4.7) (2.0) (2.4) (2.9

Norway Obs Excluded .641 -.068 -.138 .054
(4.8) (0.9) (1.5) (1.3)
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Creative Curve Fitting with Norway
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Creative Curve Fitting with Norway

Stewart (Princeton)

Corporate Taxes and Revenue, 2004

Left scale represents tax revenues as a percentage
of GDP. Bottom scale represents central
government corporate tax rates.
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The Most Important Lesson: Check Your Data
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The Most Important Lesson: Check Your Data

“Do not attempt to build a model on a set of poor data! In human surveys, one
often finds 14-inch men, 1000-pound women, students with ‘no’ lungs, and so on.
In manufacturing data, one can find 10,000 pounds of material in a 100 pound
capacity barrel, and similar obvious errors.

All the planning, and training in the world will not eliminate these sorts of
problems. In our decades of experience with ‘messy data,” we have yet to find a

large data set completely free of such quality problems.”

Draper and Smith (1981, p. 418)
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The Most Important Lesson: Check Your Data

“Do not attempt to build a model on a set of poor data! In human surveys, one
often finds 14-inch men, 1000-pound women, students with ‘no’ lungs, and so on.
In manufacturing data, one can find 10,000 pounds of material in a 100 pound
capacity barrel, and similar obvious errors.

All the planning, and training in the world will not eliminate these sorts of
problems. In our decades of experience with ‘messy data,” we have yet to find a
large data set completely free of such quality problems.”

Draper and Smith (1981, p. 418)

Carefully Examine the Data First!!
© Examine summary statistics: summary (data)

@ Scatterplot matrix for densities and bivariate relationships:
E.g. scatterplotMatrix(data) from car library.

© Further conditional plots for multivariate data:
E.g. ggplot2
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Three Types of Extreme Values

Stewart (Princeton) Week 8: Diagnostics and Solutions



Three Types of Extreme Values

@ Outlier: extreme in the y direction
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Three Types of Extreme Values

@ Outlier: extreme in the y direction

@ Leverage point: extreme in one x direction
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Three Types of Extreme Values

@ Outlier: extreme in the y direction
@ Leverage point: extreme in one x direction

© Influence point: extreme in both directions
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Three Types of Extreme Values

@ Outlier: extreme in the y direction
@ Leverage point: extreme in one x direction

© Influence point: extreme in both directions

@ Not all of these are problematic
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Three Types of Extreme Values

@ Outlier: extreme in the y direction
@ Leverage point: extreme in one x direction

© Influence point: extreme in both directions

@ Not all of these are problematic

o If the data are truly “contaminated” (come from a different
distribution), can cause inefficiency and possibly bias
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Three Types of Extreme Values

© Outlier: extreme in the y direction
@ Leverage point: extreme in one x direction

© Influence point: extreme in both directions

@ Not all of these are problematic

o If the data are truly “contaminated” (come from a different
distribution), can cause inefficiency and possibly bias

@ Can be a violation of iid (not identically distributed)
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Outlier Definition

Outlier@
6 -—
4 -
°
2 —
> ® Full sample
°

0 Iy

° °
-2 - o ° ¢ o‘ " o °

@ An outlier is a data point with very large regression errors, u;
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Outlier Definition

Outlier@
6 -—
4 -
°
2 —
> ® Full sample
°

0 Iy

° °
-2 - o ° ¢ -‘ " o °

@ An outlier is a data point with very large regression errors, u;

@ Very distant from the rest of the data in the y-dimension
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Outlier Definition

Outlier @
6 -—
4 -

°
2 —
> ® Full sample
°
0 Iy
° ° °

-2 - o ° ¢ u‘ °® o

@ An outlier is a data point with very large regression errors, u;
@ Very distant from the rest of the data in the y-dimension

@ Increases standard errors (by increasing 52)
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Outlier Definition

Outlier @
6 -—
4 -

°
2 —
> ® Full sample
°
0 Iy
° ° °

-2 - o ° ¢ u‘ °® o

@ An outlier is a data point with very large regression errors, u;
@ Very distant from the rest of the data in the y-dimension

@ Increases standard errors (by increasing 52)

@ No bias if typical in the x's
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Detecting Outliers

@ Look at standardized residuals, u/",-?
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Detecting Outliers

@ Look at standardized residuals, uA’,-?

» but 52 could be biased upwards by the large residual from the outlier
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Detecting Outliers

@ Look at standardized residuals, uA’,-?

» but 52 could be biased upwards by the large residual from the outlier
» Makes detecting residuals harder
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Detecting Outliers

@ Look at standardized residuals, uA’,-?

» but 52 could be biased upwards by the large residual from the outlier
» Makes detecting residuals harder

@ Possible solution: use studentized residuals

.
Y Ui

u = —m—m——
! 8_,'\/1 — h;
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Detecting Outliers

@ Look at standardized residuals, uA’,-?

» but 52 could be biased upwards by the large residual from the outlier
» Makes detecting residuals harder

@ Possible solution: use studentized residuals
ur = —ﬁi
! 8_,'\/ 1— h;

@ 0 > 0_; because we drop the large residual from the outlier, and so

@ <G
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Cutoff Rules for Outliers

@ The studentized residuals follow a t distribution, uf ~ t,_x_>, when
up ~ N(O, 02)
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Cutoff Rules for Outliers

@ The studentized residuals follow a t distribution, uf ~ t,_x_>, when
up ~ N(O, 02)

o Rule of thumb: |G*| > 2 will be relatively rare
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Cutoff Rules for Outliers

@ The studentized residuals follow a t distribution, uf ~ t,_x_>, when
up ~ N(O, 02)
o Rule of thumb: |G*| > 2 will be relatively rare

o Extreme outliers, |uf| > 4 — 5 are much less likely
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Cutoff Rules for Outliers

@ The studentized residuals follow a t distribution, uf ~ t,_x_>, when
up ~ N(O, 02)

o Rule of thumb: |G*| > 2 will be relatively rare

o Extreme outliers, |uf| > 4 — 5 are much less likely

@ People usually adjust cutoff for multiple testing
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Buchanan outliers
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What to do about outliers

@ |s the data corrupted?

Stewart (Princeton) Week 8: Diagnostics and Solutions



What to do about outliers

@ |s the data corrupted?
» Fix the observation (obvious data entry errors)
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What to do about outliers

@ |s the data corrupted?

» Fix the observation (obvious data entry errors)
» Remove the observation
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What to do about outliers

@ |s the data corrupted?

» Fix the observation (obvious data entry errors)
» Remove the observation
» Be transparent either way
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What to do about outliers

@ |s the data corrupted?

» Fix the observation (obvious data entry errors)
» Remove the observation
» Be transparent either way

@ Is the outlier part of the data generating process?
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What to do about outliers

@ |s the data corrupted?

» Fix the observation (obvious data entry errors)
» Remove the observation
» Be transparent either way

@ Is the outlier part of the data generating process?
» Transform the dependent variable (log(y))
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What to do about outliers

@ |s the data corrupted?
» Fix the observation (obvious data entry errors)
» Remove the observation
» Be transparent either way
@ Is the outlier part of the data generating process?

» Transform the dependent variable (log(y))
» Use a method that is robust to outliers (robust regression)
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What to do about outliers

@ |s the data corrupted?
» Fix the observation (obvious data entry errors)
» Remove the observation
» Be transparent either way
@ Is the outlier part of the data generating process?
» Transform the dependent variable (log(y))
» Use a method that is robust to outliers (robust regression)
@ Key question is what is the goal? If you want to estimate the
expectation of a distribution and a property of that distribution is
extreme observations, that's just part of the story.
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A Cautionary Tale: The “Discovery” of the Ozone Hole
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A Cautionary Tale: The “Discovery” of the Ozone Hole

@ In the late 70s, NASA used an automated data processing program on
satellite measurements of atmospheric data to track changes in atmospheric
variables such as ozone.
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A Cautionary Tale: The “Discovery” of the Ozone Hole

@ In the late 70s, NASA used an automated data processing program on
satellite measurements of atmospheric data to track changes in atmospheric
variables such as ozone.

@ This data “quality control” algorithm rejected abnormally low readings of
ozone over the Antarctic as unreasonable.
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A Cautionary Tale: The “Discovery” of the Ozone Hole

@ In the late 70s, NASA used an automated data processing program on
satellite measurements of atmospheric data to track changes in atmospheric
variables such as ozone.

@ This data “quality control” algorithm rejected abnormally low readings of
ozone over the Antarctic as unreasonable.

@ This delayed the detection of the ozone hole by several years until British
Antarctic Survey scientists discovered it based on analysis of their own
observations (Nature, May 1985).
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A Cautionary Tale: The “Discovery” of the Ozone Hole

@ In the late 70s, NASA used an automated data processing program on
satellite measurements of atmospheric data to track changes in atmospheric
variables such as ozone.

@ This data “quality control” algorithm rejected abnormally low readings of
ozone over the Antarctic as unreasonable.

@ This delayed the detection of the ozone hole by several years until British
Antarctic Survey scientists discovered it based on analysis of their own
observations (Nature, May 1985).

@ The ozone hole was detected in satellite data only when the raw data was
reprocessed. When the software was rerun without the pre-processing flags,
the ozone hole was seen as far back as 1976.
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A Sociological Cautionary Tale

Comment on Herring, ASR, April 2009 AERIAN socIoLoGICAL ssocTION
) )

American Sociological Review
. . 2017, Vol. 82(4) 857-867
DOES DlverSlty Pay? A © American Sociological

Association 2017

Replication of Herring (2009) DOI: 10.1177/0003122417714422

journals.sagepub.com/home/asr

®SAGE

Dragana Stojmenovska,* Thijs Bol,?
and Thomas Leopold?®

Abstract

In an influential article published in the American Sociological Review in 2009, Herring finds
that diverse workforces are beneficial for business. His analysis supports seven out of eight
hypotheses on the positive effects of gender and racial diversity on sales revenue, number of
customers, perceived relative market share, and perceived relative profitability. This comment
points out that Herring’s analysis contains two errors. First, missing codes on the outcome
variables are treated as substantive codes. Second, two control variables—company size and
establishment size—are highly skewed, and this skew obscures their positive associations
with the predictor and outcome variables. We replicate Herring’s analysis correcting for
both errors. The findings support only one of the original eight hypotheses, suggesting that
diversity is nonconsequential, rather than beneficial, to business success.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 52 /127



A Sociological Cautionary Tale

Stewart (Princeton)

In our correspondence with Herring, he
did not offer a definitive explanation for these
discrepancies, but indicated that he may have
treated all codes other than “not applicable”
(—999) as substantive codes. Given (1) the
large difference between his sample size and
the number of valid observations in the NOS,
and (2) the large number of missing values
due to reasons other than “not applicable”—
in particular for sales revenue and number of
customers—this coding error appears likely
to account for much of the discrepancies. This
means, for example, that 206 business organi-
zations in which the sales revenue was
unknown were treated as if they had sales of
88,888,888,888 US Dollars. Yet, even when
we replicated this error (i.e., keeping all
organizations with missing values other than
—999 in our sample), we were unable to
recover Herring’s sample sizes, although the
differences were smaller.
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Leverage Point Definition

Leverage Point

@ Values that are extreme in the x direction
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Leverage Point Definition

Leverage Point

@ Values that are extreme in the x direction

@ That is, values far from the center of the covariate distribution
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Leverage Point Definition

Leverage Point
Full sample Ab

Without leverage point

@ Values that are extreme in the x direction
@ That is, values far from the center of the covariate distribution

@ Decrease SEs (more X variation)
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Leverage Point Definition

Leverage Point
Full sample

Without leverage point

@ Values that are extreme in the x direction

@ That is, values far from the center of the covariate distribution
@ Decrease SEs (more X variation)

@ No bias if typical in y dimension
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Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H:
§=XB8=X(XX) "Xy=Hy

H is n X n, symmetric, and idempotent. It generates fitted values as follows:

p41

Y2 n
yi=hjy= [ hia hia - hin ] } = Z hijy;

Yn
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Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H:
§=XB=X(XX) "Xy =Hy

H is n X n, symmetric, and idempotent. It generates fitted values as follows:

Y1
A ! y2 .
Ji=hy=1[ha ha - ha]| . | =D hyy
: <
Yn

Therefore,

@ h; dictates how important y; is for the fitted value y; (regardless of the actual
value of yj, since H depends only on X)
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Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H:

§=XB=X(XX) "Xy =Hy

H is n X n, symmetric, and idempotent. It generates fitted values as follows:

Y1
A~ ! y2 .
Ji=hy=1[ha ha - ha]| . | =D hyy
Yn

Therefore,

@ h; dictates how important y; is for the fitted value y; (regardless of the actual

value of yj, since H depends only on X)

@ The diagonal entries h; = >_"_, h;

5 SO they summarize how important y; is for all

the fitted values. We call them the hat values or leverages and a single subscript

notation is used: h; = h;;
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Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H:
§=XB=X(XX) "Xy =Hy

H is n X n, symmetric, and idempotent. It generates fitted values as follows:

Y1

ye .
Ji=hiy=[ hix hia - hin ] = Z hijy;

. j=1

Yn

Therefore,

@ hj; dictates how important y; is for the fitted value y; (regardless of the actual
value of yj, since H depends only on X)

@ The diagonal entries h; = Z}’:I hi so they summarize how important y; is for all
the fitted values. We call them the hat values or leverages and a single subscript
notation is used: h; = hj;

@ Intuitively, the hat values measure how far a unit’s vector of characteristics x; is
from the vector of means of X
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Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H:
§=XB=X(XX) "Xy =Hy

H is n X n, symmetric, and idempotent. It generates fitted values as follows:

p41
~ ! y2 !
Ji=hiy=[ hix hia - hin ] : = Z hijy;
=1
Yn

Therefore,

@ hj; dictates how important y; is for the fitted value y; (regardless of the actual
value of yj, since H depends only on X)

@ The diagonal entries h; = Z}’:I hi so they summarize how important y; is for all
the fitted values. We call them the hat values or leverages and a single subscript
notation is used: h; = hj;

@ Intuitively, the hat values measure how far a unit’s vector of characteristics x; is
from the vector of means of X

@ Rule of thumb: examine hat values greater than 2(k +1)/n
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Appendix: Facts about Hat Values

o Yl ihi=k+1
@ 1/n>h;>1foralli
o Var[uj] = (1 — h;)o?

@ With a simple linear regression, we have

1 X; — X)?
SECES
no (X = X)
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Influence points
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Influence points

e
Influence Point

out Influence po
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Influence points

e
Influence Point

out Influence po

@ An influence point is one that is both an outlier (extreme in Y) and a
leverage point (extreme in X).
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Influence points

e
Influence Point

out influence po

@ An influence point is one that is both an outlier (extreme in Y) and a
leverage point (extreme in X).

@ Causes the regression line to move toward it.
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Detecting Influence Points/Bad Leverage Points

@ Influence Points:
Influence on coefficients = Leverage x Outlyingness
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Detecting Influence Points/Bad Leverage Points
@ Influence Points:

Influence on coefficients = Leverage x Outlyingness

@ More formally: Measure the change that occurs in the slope estimates
when an observation is removed from the data set. Let

Dij:BJ'_BJ'(—i)’ i=1,...,n, j=0,...,k

where ﬁAj(_,-) is the estimate of the jth coefficient from the same
regression once observation i has been removed from the data set.
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Detecting Influence Points/Bad Leverage Points

@ Influence Points:
Influence on coefficients = Leverage x Outlyingness

@ More formally: Measure the change that occurs in the slope estimates
when an observation is removed from the data set. Let

Djj =By = Bj—iy» i=1,....,n, j=0,...,k

where ﬁAj(_,-) is the estimate of the jth coefficient from the same
regression once observation i has been removed from the data set.

@ Dj is called the DFbeta, which measures the influence of observation
i on the estimated coefficient for the jth explanatory variable.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale D;; by the
estimated standard error of the coefficients:

D; = /BjA_ Bj(A—i)
SE_i(B))
where D,-J*- is called DFbetaS.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale D;; by the
estimated standard error of the coefficients:

D; = /BjA_ Bj(A—i)
SE_i(B))
where D,-J*- is called DFbetaS.

° D,.J*. > 0 implies that removing observation i decreases the estimate of
Bj — obs i has a positive influence on f3;.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale D;; by the
estimated standard error of the coefficients:

SE_i(B))
where D,.J*. is called DFbetaS.

° D,-J*- > 0 implies that removing observation i decreases the estimate of
B; — obs i has a positive influence on f3;.

° D,-j- < 0 implies that removing observation / increases the estimate of
B; — obs i has a negative influence on ;.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale D;; by the
estimated standard error of the coefficients:

SE_i(B))
where D,.J*. is called DFbetaS.

° D,-J*- > 0 implies that removing observation i decreases the estimate of
B; — obs i has a positive influence on f3;.

° D,-j- < 0 implies that removing observation / increases the estimate of
B; — obs i has a negative influence on ;.

o Values of |Df| > 2/+/n are an indication of high influence.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale D;; by the
estimated standard error of the coefficients:

Y SE_i(B)
where D,.J*. is called DFbetaS.
° D,-J*- > 0 implies that removing observation i decreases the estimate of
B; — obs i has a positive influence on f3;.

° D,-j- < 0 implies that removing observation / increases the estimate of
B; — obs i has a negative influence on ;.

o Values of |Df| > 2/+/n are an indication of high influence.
@ In R: dfbetas(model)
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Buchanan influence

##
#i#
##
#i#
##
##
##
#i#
##
##
##
##
#i#

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -2.935e+01 5.520e+01 -0.532 0.59686
edaytotal 1.100e-03 4.797e-04 2.293 0.02529 *
absnbuchanan 6.895e+00 2.129e+00 3.238 0.00195 =*x

Signif. codes: O ’x*x’ 0.001 ’xx’ 0.01 ’x’ 0.05 ’.” 0.1’

Residual standard error: 317.2 on 61 degrees of freedom

(3 observations deleted due to missingness)

Multiple R-squared: 0.5361, Adjusted R-squared: 0.5209
F-statistic: 35.24 on 2 and 61 DF, p-value: 6.711le-11
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Buchanan influence

##
#i#
##
#it
##
#it
#i#

DO WN

(Intercept)
.3454475146
.0234266617
.0650795039
.0333980968
.0397626659
.0009277798

Stewart (Princeton)

edaytotal absnbuchanan

.4050504921 -0.
.0241000045 -0.
.7319311820 O.
.0133802934 -0.
.0073746223 0.
.0001505476 0.
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7505222758
0131672181
3401669862
0087505576
0096551713
0002210247
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Buchanan influence
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@ Palm Beach county moves each of the coefficients by more than 3
standard errors!
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.

@ A number of summary measures exist for influence of data points across all
coefficients, all involving both leverage and outlyingness.
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.

@ A number of summary measures exist for influence of data points across all

coefficients, all involving both leverage and outlyingness.

@ A popular measure is Cook’s distance:

~12
al h
D, = ! X d
k+1 1— h;
—— ——
outlyingness leverage

where / is the standardized residual and h; is the hat value.
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.

@ A number of summary measures exist for influence of data points across all

coefficients, all involving both leverage and outlyingness.

@ A popular measure is Cook’s distance:

~12
al h
D; = ! X d
k+1 1— h;
—— ——
outlyingness leverage

where / is the standardized residual and h; is the hat value.
» It can be shown that D; is a weighted sum of k + 1 DFbetaS’s for

observation i
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.

@ A number of summary measures exist for influence of data points across all
coefficients, all involving both leverage and outlyingness.

@ A popular measure is Cook’s distance:

~12
al h
D; = ! X d
k+1 1— h;
—— ——
outlyingness leverage

where / is the standardized residual and h; is the hat value.

» It can be shown that D; is a weighted sum of k + 1 DFbetaS’s for

observation i
» In R, cooks.distance(model)
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.

@ A number of summary measures exist for influence of data points across all
coefficients, all involving both leverage and outlyingness.

@ A popular measure is Cook’s distance:

n12
i’ h
D; = i X —
k+1 1—h;
—— ——
outlyingness leverage

where / is the standardized residual and h; is the hat value.

» It can be shown that D; is a weighted sum of k + 1 DFbetaS’s for

observation i
» In R, cooks.distance(model)
» D> 4/(n— k—1)is commonly considered large
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.

@ A number of summary measures exist for influence of data points across all
coefficients, all involving both leverage and outlyingness.

@ A popular measure is Cook’s distance:

n12
i’ h
D; = i X —
k+1 1—h;
—— ——
outlyingness leverage

where

» It can be shown that D; is a weighted sum of k + 1 DFbetaS’s for
observation i

» In R, cooks.distance(model)

» D> 4/(n— k—1) is commonly considered large

is the standardized residual and h; is the hat value.

@ The influence plot: the studentized residuals plotted against the hat values,
size of points proportional to Cook's distance.
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Summarizing Influence across All Coefficients

@ Leverage tells us how much one data point affects a single coefficient.

@ A number of summary measures exist for influence of data points across all
coefficients, all involving both leverage and outlyingness.

@ A popular measure is Cook’s distance:

n12
i’ h
D; = i X —
k+1 1—h;
—— ——
outlyingness leverage

where

» It can be shown that D; is a weighted sum of k + 1 DFbetaS’s for
observation i

» In R, cooks.distance(model)

» D> 4/(n— k—1) is commonly considered large

is the standardized residual and h; is the hat value.

@ The influence plot: the studentized residuals plotted against the hat values,
size of points proportional to Cook's distance.
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Influence Plot Buchanan

Influence Plot

204
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: Cook's Distance
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! WM., Pinlas

Studentized Residuals

Hat Values

Courtesy of Erin Hartman
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Code for Influence Plot

ggplot(fl_1m, aes(x = .hat, y = rstudent(fl_1m),

size = .cooksd,

col = .cooksd > 4/(nrow(fl_data) - 1 - 1),

label = fl_data$county)) +

geom_point() + geom_text(vjust = 2) +

xlab("Hat Values") + ylab("Studentized Residuals") +
geom_vline(xintercept = 2 * (fl1_1lm$rank - 1 + 1)/nrow(fl_data)
, linetype = 2) +

geom_hline(yintercept = c(-4, 4), linetype = 2) +
scale_color_manual ("High Influence",

values = c("TRUE" = ucla_gold,

"FALSE" = ucla_blue)) +

scale_size("Cook’s Distance") + theme_bw() +

theme (legend.position = ¢(0.9, 0.5)) + ylim(c(-7, 20)) +
x1im(c(0, 0.4)) + ggtitle("Influence Plot")
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A Quick Function for Standard Diagnostic Plots

> par(mfrow=c(2,2))
> plot(modl)

R Code

Residuals vs Fitted Normal Q-Q
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The Improved Model

R Code
> par (mfrow=c(2,2))
> plot(mod2)
Residuals vs Fitted Normal Q-Q
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‘Fun With Outliers'! (via FiveThirtyEight)
Sdmeihing Looks Weird In Broward
County. Here's What We Know
About A Possible Florida Recount.

By Nathaniel Rakich

Filed under 2018 Election °°
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‘Fun With Outliers'! (via FiveThirtyEight)

The Florida U.S. Senate race is still too close to call. According to unofficial
results on the Florida Department of State website at 11:45 a.m. Eastern on
Friday, Nov. 9, Republican Gov. Rick Scott led Democratic Sen. Bill Nelson by
15,046 votes — or 0.18 percentage points. We’re watching that margin
closely because if it stays about that small, it will trigger a recount. It’s
already narrowed since election night, when Scott initially declared victory
with a 56,000-vote lead.
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‘Fun With Outliers'! (via FiveThirtyEight)

A lot of Broward County voters skipped the Senate race

The percentage difference between votes cast for governor and
votes cast for U.S. Senate in every Florida county in the 2018
midterm election, as of 8:15 a.m. on Nov. 9

-1%

Liberty
*
County In Broward County, 3.7% fewer
o votes were cast for U.S. Senate — @

than for governor

< More votes for More votes for p *Liberty County cast only 26 more votes for

Senate than | governor than Senate than governor, but because that amounts
governor | Senate to nearly 1 percent of the small total number of
votes cast there, the county is an outlier.

FiveThirtyEight SOURCE: FLORIDA DEPARTMENT OF STATE

Stewart (Princeton) : Diagnostics and Solutions




‘Fun With Outliers'! (via FiveThirtyEight)

Broward County’s undervote rate is way out of line with every other county
in Florida, which exhibited, at most, a 0.8-percent difference. (There is one
outlier — the sparsely populated Liberty County — where votes cast in the
Senate race were 1 percent higher than in the governor race, but there we’re
talking about a difference of 26 votes, not more than 26,000, as is the case in
Broward.)

To put in perspective what an eye-popping number of undervotes that is,
more Broward County residents voted for the down-ballot constitutional
offices of chief financial officer and state agriculture commissioner than
U.S. Senate — an extremely high-profile election in which $181 million was
spent. Generally, the higher the elected office, the less likely voters are to
skip it on their ballots. Something sure does seem off in Broward County;
we just don’t know what yet.
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‘Fun With Outliers'! (via FlveThlrtyElght)
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‘Fun With Outliers'! (via FiveThirtyEight)

Sun Sentinel reporters talked with a ballot expert, who said that some voters
may not have noticed the Senate race (perhaps thinking it was just part of
the ballot instructions) and started filling out their ballot with the governor
race instead. That theory is supported by a data consultant who’s worked for
several political campaigns in Florida, who found that the parts of Broward
County that fall in the 24th Congressional District did see higher levels of
undervoting than other parts of the county. That might be because the 24th
District was uncontested, which according to Florida law means that the
congressional race did not appear on the ballot at all. As you can see in the
sample ballot above, the congressional race would also appear in the lower-
left corner on many ballots, along with the Senate race. In districts where
there was no congressional race on the ballot, however, that corner would
have looked even emptier, perhaps making it easier for voters to
inadvertently skip over the Senate race.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 68 /127



‘Fun With Outliers'! (via FiveThirtyEight)

One possible reason for the discrepancy is poor ballot design. Broward
County ballots listed the U.S. Senate race first, right after the ballot
instructions. But that pushed the U.S. Senate race to the far bottom left of
the ballot, where voters may have skimmed over it, while the governor’s race
appears at the top of the ballot’s center column, immediately to the right of
the instructions.
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‘Fun With Outliers'! (via FiveThirtyEight)

An alternative explanation is that an error with the vote-tabulating machines
in Broward County caused them to sometimes not read people’s votes for
U.S. Senate. If that’s true, we would probably only find out if there is a
manual recount. According to Florida law, any election that’s within half a
percentage point (as this one currently is) triggers a machine recount; then,
after the machine recount, if the race is within a quarter of a percentage
point, it goes to a much more complex manual recount — a.k.a. each ballot
is recounted by hand. As long as the machine recount doesn’t change the
Senate results too much (barring a surprise in the remaining ballots in
Broward and Palm Beach), it looks like that’s where we’re headed. In
addition, Republican former Rep. Ron DeSantis and Democratic Tallahassee
Mayor Andrew Gillum are separated by just 0.44 points in the governor’s

race, so that could go to a machine recount, too.
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@ Qutliers, Leverage and Influence Points
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We Covered

@ Qutliers, Leverage and Influence Points
@ Always check your datal

@ Don't let regression be a magic black box for you- understand what is
in your data that is leading to the findings.
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We Covered

@ Qutliers, Leverage and Influence Points
@ Always check your datal

@ Don't let regression be a magic black box for you- understand what is
in your data that is leading to the findings.

Next Time: Robust Regression
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Where We've Been and Where We're Going...

Last Week
» multiple regression
This Week
» diagnosing problems and troubleshooting the linear model
» unusual and influential data — robust estimation
> non-linearity — generalized additive models
» unusual errors — sandwich SEs
Next Week
» frameworks for causal inference
Long Run
> probability — inference — regression — causal inference
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@ Thinking About Problems
© Non-Normality

© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points

@ Robust Regression Methods
@ Appendix: Robustness

© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models

@ Clustering
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@ Robust Regression Methods
@ Appendix: Robustness
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Limitations of the Standard Tools
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Limitations of the Standard Tools

@ What happens when there are two influence points?
@ Red line drops the red influence point

@ Blue line drops the blue influence point
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Limitations of the Standard Tools

@ What happens when there are two influence points?
@ Red line drops the red influence point
@ Blue line drops the blue influence point

@ Neither of the “leave-one-out” approaches helps recover the line
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The Idea of Robustness

@ We have and will cover a few ideas in robust statistics (much of
which is due directly or indirectly to Peter Huber).
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The Idea of Robustness

@ We have and will cover a few ideas in robust statistics (much of
which is due directly or indirectly to Peter Huber).

@ Robust methods are procedures that are designed to continue to
provide ‘reasonable’ answers in the presence of violation of some
assumptions.
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The Idea of Robustness

@ We have and will cover a few ideas in robust statistics (much of
which is due directly or indirectly to Peter Huber).

@ Robust methods are procedures that are designed to continue to
provide ‘reasonable’ answers in the presence of violation of some
assumptions.

@ A lot of social scientists use robust standard errors but far fewer use

robust regression tools.
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provide ‘reasonable’ answers in the presence of violation of some
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robust regression tools.

@ These methods used to be computationally prohibitive but haven't
been for the last 10-15 years
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The Idea of Robustness

@ We have and will cover a few ideas in robust statistics (much of
which is due directly or indirectly to Peter Huber).

@ Robust methods are procedures that are designed to continue to
provide ‘reasonable’ answers in the presence of violation of some
assumptions.

@ A lot of social scientists use robust standard errors but far fewer use
robust regression tools.

@ These methods used to be computationally prohibitive but haven't
been for the last 10-15 years

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 73 /127



But What About Gauss-Markov and BLUE?

@ One argument here is that even without normality, we know that
Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 74 /127



But What About Gauss-Markov and BLUE?

@ One argument here is that even without normality, we know that
Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

@ How comforting should this be?
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But What About Gauss-Markov and BLUE?

@ One argument here is that even without normality, we know that
Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

@ How comforting should this be? Not very.
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But What About Gauss-Markov and BLUE?

@ One argument here is that even without normality, we know that
Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

@ How comforting should this be? Not very.

@ The Linear point is an artificial restriction. It means the estimator has
to be of the form g = Wy but why only use those?
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But What About Gauss-Markov and BLUE?

@ One argument here is that even without normality, we know that
Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

@ How comforting should this be? Not very.

@ The Linear point is an artificial restriction. It means the estimator has
to be of the form 3 = Wy but why only use those?

e With normality assumption we get Best Unbiased Estimator (BUE)
which is quite comforting when n > p (number of observations much
larger than number of variables).
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

" [Even without normally distributed errors] OLS co-
efficient estimators remain unbiased and efficient.”
- Berry (1993)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

"[The Gauss-Markov theorem] justifies the use of
the OLS method rather than using a variety of com-
peting estimators”

- Wooldridge (2013)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

"We need not look for another linear unbiased esti-
mator, for we will not find such an estimator whose
variance is smaller than the OLS estimator”

- Guyjarati (2004)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

"The Gauss-Markov theorem allows us to have con-
siderable confidence in the least squares estima-
tors.”

- Berry and Feldman (1993)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

The Gauss-Markov theorem has convinced re-
searchers in political science that as long as . .. the
Gauss-Markov assumptions are met, the distribu-
tion of the errors is unimportant. But the distri-
bution of the errors is crucial to a linear regression
analysis. Deviations from normality, especially large
deviations commonly found in regression models in
political science, can devastate the performance of

least squares compared to alternative estimators
- Baissa and Rainey (2018)
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Robustly Estimating a Location

@ Let's simplify- what if we want to estimate the center of a symmetric
distribution.
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Robustly Estimating a Location

@ Let's simplify- what if we want to estimate the center of a symmetric
distribution.

e Two options (of many): mean and median
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Robustly Estimating a Location
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sensitivity to assumption violation.
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Robustly Estimating a Location

@ Let's simplify- what if we want to estimate the center of a symmetric
distribution.

e Two options (of many): mean and median

@ Characteristics to consider: efficiency when assumptions hold,
sensitivity to assumption violation.

e For normal data y; ~ A (u,0?), median is less efficient:
2

> V(//)'mean) = UT

> V(pfmedian) = %
» Median is 7 times larger (i.e. less efficient)
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Robustly Estimating a Location

Let's simplify- what if we want to estimate the center of a symmetric
distribution.

Two options (of many): mean and median

Characteristics to consider: efficiency when assumptions hold,
sensitivity to assumption violation.
e For normal data y; ~ N(y,0?), median is less efficient:

> V(fimean) = %

> V(fimedian) = 55

» Median is 7 times larger (i.e. less efficient)
@ We can measure sensitivity with the influence function which
measures change in estimator based on corruption in one datapoint.
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Influence Function

@ Imagine that we had a sample Y fro_m a standard normal: -0.068,
-1.282, 0.013, 0.141, -0.980, 1.63. Y = —1.52

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 77 /127



Influence Function

@ Imagine that we had a sample Y from a standard normal: -0.068,
-1.282, 0.013, 0.141, -0.980, 1.63. Y = —1.52

© Now imagine we add a contaminated 7th observation which could
range from -10 to +10. How would the estimator change for the
median and mean?
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Influence Function
@ Imagine that we had a sample Y from a standard normal: -0.068,
-1.282, 0.013, 0.141, -0.980, 1.63. Y = —1.52
© Now imagine we add a contaminated 7th observation which could
range from -10 to +10. How would the estimator change for the
median and mean?

Influence Function

estimator
0.0~ ~—— mean

— median

Estimate

-10 5 0 5 1o
7th Observation

Example from Fox
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Breakdown Point

@ The influence function showed us how one aberrant point can change
the resulting estimate.
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Breakdown Point

@ The influence function showed us how one aberrant point can change
the resulting estimate.

@ We also want to characterize the breakdown point which is the
fraction of arbitrarily bad data that the estimator can tolerate without
being affected to an arbitrarily large extent
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Breakdown Point

@ The influence function showed us how one aberrant point can change
the resulting estimate.

@ We also want to characterize the breakdown point which is the
fraction of arbitrarily bad data that the estimator can tolerate without
being affected to an arbitrarily large extent

@ The breakdown point of the mean is 0 because (as we have seen) a
single bad data point can change things a lot.
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Breakdown Point

@ The influence function showed us how one aberrant point can change
the resulting estimate.

@ We also want to characterize the breakdown point which is the
fraction of arbitrarily bad data that the estimator can tolerate without
being affected to an arbitrarily large extent

@ The breakdown point of the mean is 0 because (as we have seen) a
single bad data point can change things a lot.

@ The median has a breakdown point of 50% because half the data can
be bad without causing the median to become completely unstuck.
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M-estimators

@ We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation
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M-estimators

@ We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation

@ M-estimators minimize a sum over an objective function > p(E)
where E is Y; — [i
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@ We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation

@ M-estimators minimize a sum over an objective function > p(E)
where E is Y; — [i

» The mean has > p(E) = >_.(Y; — p)?
» The median has >, p(E) = >, [(Yi — )]
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@ We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation

@ M-estimators minimize a sum over an objective function > p(E)
where Eis Y;i — i

» The mean has > p(E) = >_.(Y; — p)?
» The median has >, p(E) = >, [(Yi — )]

@ The shape of the influence function is determined by the derivative of
the objective function with respect to E.
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M-estimators

@ We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation

@ M-estimators minimize a sum over an objective function > p(E)
where Eis Y;i — i

» The mean has > p(E) = >_.(Y; — p)?
» The median has >, p(E) = >, [(Yi — )]

@ The shape of the influence function is determined by the derivative of
the objective function with respect to E.

@ Other objectives include the Huber objective and Tukey's biweight
objective which have different properties.
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M-estimators

We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation

M-estimators minimize a sum over an objective function > p(E)
where Eis Y;i — i

» The mean has > p(E) = >_.(Y; — p)?

» The median has >, p(E) = >, [(Yi — )]
The shape of the influence function is determined by the derivative of
the objective function with respect to E.

Other objectives include the Huber objective and Tukey's biweight
objective which have different properties.

Calculating robust M estimators often requires an iterative procedure
and a careful initialization.
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M-estimation for Regression

@ We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose p() so that observations with large residuals
get less weight.
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M-estimation for Regression

@ We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose p() so that observations with large residuals
get less weight.

@ Can be very robust to outliers in the Y space (less so in the X space
usually)
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M-estimation for Regression

@ We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose p() so that observations with large residuals
get less weight.

@ Can be very robust to outliers in the Y space (less so in the X space
usually)
@ Some options:
» Least Median Squares: choose 3 to minimize

median{(y,- — x:-BLMS)Z} . Very high breakdown point, but very
-
inefficient. I
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M-estimation for Regression

@ We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose p() so that observations with large residuals
get less weight.

@ Can be very robust to outliers in the Y space (less so in the X space
usually)

@ Some options:

» Least Median Squares: choose 3 to minimize
median{(y,- — x§BLMS)2}7_1. Very high breakdown point, but very
inefficient. R

» Least Trimmed Squares: choose 3 to minimize the sum of the p
smallest elements of {(y,- - xf-,@LTs)z}nil. High breakdown point and

i

more efficient, still not as efficient as some.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 80 /127



M-estimation for Regression

@ We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose p() so that observations with large residuals
get less weight.

@ Can be very robust to outliers in the Y space (less so in the X space
usually)

@ Some options:

» Least Median Squares: choose B to minimize
median{(y,- — x§ﬂALMS)2}7_1. Very high breakdown point, but very
inefficient. R

» Least Trimmed Squares: choose 3 to minimize the sum of the p
smallest elements of {(y,- - X:'BLTS)z}:,l' High breakdown point and
more efficient, still not as efficient as some.

» MM-estimator: what | recommend in practice (more in appendix)

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 80 /127



M-estimation for Regression

@ We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose p() so that observations with large residuals
get less weight.

@ Can be very robust to outliers in the Y space (less so in the X space
usually)
@ Some options:
» Least Median Squares: choose ﬁA to minimize
median{(y,- — x§BALMS)2}7_1. Very high breakdown point, but very
inefficient. R
» Least Trimmed Squares: choose 3 to minimize the sum of the p
smallest elements of {(y,- - X§BLT5)2}:71. High breakdown point and
more efficient, still not as efficient as some.
» MM-estimator: what | recommend in practice (more in appendix)
@ You can find an asymptotic covariance matrix for M-estimators but |

would bootstrap it if possible as the asymptotics kick in slowly.
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library (MASS)

set.seed(588)

n <- 50

x <- rnorm(n)

y <= 10 - 2*x + rnorm(n)

x[1:5] <- rnorm(5, mean=5)

y[1:5] <- 10 + rnorm(5)

ols.out <- 1m(y~x)

m.out <- rlm(y~x, method="M")
lms.out <- 1lgs(y~x, method="lms")
1lts.out <- 1lgs(y~x, method="1lts")
s.out <- 1lgs(y“x, method="S")
mm.out <- rlm(y~x, method="MM")

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020

81/127



Simulation Results

oLs M LMS
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Thoughts on Robust Estimators

@ Robust estimators aren't commonly seen in applied social science
work but perhaps they should be.
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Thoughts on Robust Estimators

@ Robust estimators aren't commonly seen in applied social science
work but perhaps they should be.

@ Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.
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Thoughts on Robust Estimators

@ Robust estimators aren't commonly seen in applied social science
work but perhaps they should be.

@ Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.

@ In most cases | personally would start with OLS, do diagnostics and
then consider a robust alternative. If | don't have time for
diagnostics, maybe robust is better from the outset.
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Thoughts on Robust Estimators

Robust estimators aren’t commonly seen in applied social science
work but perhaps they should be.

@ Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.

In most cases | personally would start with OLS, do diagnostics and
then consider a robust alternative. If | don't have time for
diagnostics, maybe robust is better from the outset.

See Baissa and Rainey (2018) “When BLUE is Not Best: Non-Normal

Errors and the Linear Model” in Political Science Research &
Methods for more on this topic.

@ The Fox textbook Chapter 19 is also quite good on this and points
out to the key references
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We Covered
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We Covered

@ Robust Regression
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We Covered

@ Robust Regression
@ Appendix after these slides with some more formality on
M-estimators.

Next Time: Nonlinearity
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Appendix: Characterizing Estimator Robustness (formally)

Definition (Breakdown Point)

The breakdown point of an estimator is the smallest fraction of the data
that can be changed an arbitrary amount to produce an arbitrarily large
change in the estimate (Seber and Lee 2003, pg 82)

Definition (Influence Function)

Let F, = (1 — p)F + pd,, where F is a probability measure, d,, is the
point mass at zy € R¥, and p € (0, 1).

Let T(-) be a statistical functional. The influence function of T is

. _ o T(Fp) = T(F)
IF(z0; T, F) = lim —=2=_——=

The influence function is a function of zy given T and F. It describes how
T changes with small amounts of contamination at zg (Hampel,
Rousseeuw, Ronchetti, and Stahel, (1986), p. 84).

V.
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Appendix: S Estimators

To talk about MM—estimators we need a type of estimator called an
S-estimator.
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Appendix: S Estimators

To talk about MM—estimators we need a type of estimator called an
S-estimator.

S-estimators work somewhat differently in that the goal is to minimize the
scale estimate subject to a constraint.
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Appendix: S Estimators

To talk about MM—estimators we need a type of estimator called an
S-estimator.

S-estimators work somewhat differently in that the goal is to minimize the
scale estimate subject to a constraint.

An S-estimator for the regression model is defined as the values of Bs and
s that minimize s subject to the constraint:

s, (y,-—x:ﬂs> - K
n = s
where K is user-defined constant (typically set to 0.5) and p: R — [0,1] is
a function with the following properties (Davies, 1990, p. 1653):
Q9 p(0)=1
Q@ p(u) =p(-u),ueR
@ p: Ry — [0,1] is nonincreasing, continuous at 0, and continuous on
the left
Q for some ¢ >0, p(u) > 0if |u| < cand p(u) =0if |u| > ¢
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scale estimate subject to a constraint.

An S-estimator for the regression model is defined as the values of Bs and
s that minimize s subject to the constraint:

s, (y,-—x:ﬂs> - K
n = s
where K is user-defined constant (typically set to 0.5) and p: R — [0,1] is
a function with the following properties (Davies, 1990, p. 1653):
Q9 p(0)=1
Q@ p(u) =p(-u),ueR
@ p: Ry — [0,1] is nonincreasing, continuous at 0, and continuous on
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Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds— very high
breakdown point and good efficiency.
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Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds— very high
breakdown point and good efficiency.

The work by first calculating S-estimates of the scale and coefficients and
then using these as starting values for a particular M-estimator.
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Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds— very high
breakdown point and good efficiency.

The work by first calculating S-estimates of the scale and coefficients and
then using these as starting values for a particular M-estimator.

Good properties, but costly to compute (usually impossible to compute
exactly).
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Where We've Been and Where We're Going...

Last Week
» multiple regression
This Week
» diagnosing problems and troubleshooting the linear model
» unusual and influential data — robust estimation
> non-linearity — generalized additive models
» unusual errors — sandwich SEs
Next Week
» frameworks for causal inference
Long Run
> probability — inference — regression — causal inference
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@ Thinking About Problems
© Non-Normality

© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points

@ Robust Regression Methods
@ Appendix: Robustness

© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models

@ Clustering
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© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models
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Nonlinearity
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Nonlinearity

@ We know that linear regression asymptotically gets us the best linear
approximation to the conditional expectation function.
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Nonlinearity

@ We know that linear regression asymptotically gets us the best linear
approximation to the conditional expectation function.

@ We can always add transformations of variables (like polynomials) to
expand X in a way that makes non-linear shapes in the original
variable.
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Nonlinearity

@ We know that linear regression asymptotically gets us the best linear
approximation to the conditional expectation function.

@ We can always add transformations of variables (like polynomials) to
expand X in a way that makes non-linear shapes in the original
variable.

@ What happens when we don't know the shape of the non-linearity?
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Nonlinearity

@ We know that linear regression asymptotically gets us the best linear
approximation to the conditional expectation function.

@ We can always add transformations of variables (like polynomials) to
expand X in a way that makes non-linear shapes in the original
variable.

@ What happens when we don't know the shape of the non-linearity?

@ In Week 5 we talked about nonparametric regressions for settings
with one independent variable.
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Nonlinearity

@ We know that linear regression asymptotically gets us the best linear
approximation to the conditional expectation function.

@ We can always add transformations of variables (like polynomials) to
expand X in a way that makes non-linear shapes in the original
variable.

@ What happens when we don't know the shape of the non-linearity?

@ In Week 5 we talked about nonparametric regressions for settings
with one independent variable.

@ Many forms of machine learning are best thought of as nonparametric
regressions in higher dimensions.
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Nonlinearity

@ We know that linear regression asymptotically gets us the best linear
approximation to the conditional expectation function.

We can always add transformations of variables (like polynomials) to
expand X in a way that makes non-linear shapes in the original
variable.

What happens when we don't know the shape of the non-linearity?

In Week 5 we talked about nonparametric regressions for settings
with one independent variable.

Many forms of machine learning are best thought of as nonparametric
regressions in higher dimensions.

@ We can often see poor fits of the conditional expectation function in
the residuals, but let's instead just do diagnosis by treatment and
look at some of these other approaches to modeling.
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CURVE-FITTING METHODS
PND THE MESSAGES THEY SEND

QUADRATC

"HEY, I DDA " UANTED A CURVED
REGRESSION. UNE, 50 T MADE ONE
VITH MATH
EXPONENTAL o LOESS . UINE .

TM SOPHSTCATED NOT ‘M MAKING A
LIKE THOSE BUMBUNG SCATTER PLOT BUT
I DONT LANT TO°

POLYNOMIAL PEOPLE™

“I NEED To CONNECT THESE "L HAVE A THEORY,
TWO LINES, BUT MY FIRST IDEA AND THIS 15 THE ONLY
DION'T HAVE ENOUGH MATH! DATA T COULD FIND

“I HAD AN IDEA FOR HOU
0 CLEAN UP THE DATA.
\HAT DO YOU THINK?"

Thanks XKCD for having a comic for everything!
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@ Thinking About Problems
© Non-Normality

© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points

@ Robust Regression Methods
@ Appendix: Robustness

© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models

@ Clustering
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© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff

High Bias Low Bias
Low Variance High Variance
- aaaaaa -

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity
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Example Synthetic Problem

y =sin(1+x?) +e

1.05
1

1.00
1

0.90
1

0.85
1

true function and data points

This section adapted from slides by Radford Neal.
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Linear Basis Function Models
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Linear Basis Function Models

o We talked before about polynomials x2, x3, x* for modeling
non-linearities, this is a linear basis function model.
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Linear Basis Function Models

o We talked before about polynomials x2, x3, x* for modeling
non-linearities, this is a linear basis function model.

@ In general the idea is to do a linear regression of y on
d1(x), 2(x), ..., dm—1(x) where ¢; are basis functions.
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Linear Basis Function Models

o We talked before about polynomials x2, x3, x* for modeling
non-linearities, this is a linear basis function model.

@ In general the idea is to do a linear regression of y on
d1(x), 2(x), ..., dm—1(x) where ¢; are basis functions.

@ The model is now:
y=f(x,8) +e

m—1
f(x,8)=Bo+ > _ Bigi(x) = BT ¢(x)

Jj=1
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Polynomial Basis Functions

We have already seen some basis functions. Here are OLS fits with
polynomial basis functions of increasing order.
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Polynomial Basis Functions

We have already seen some basis functions. Here are OLS fits with
polynomial basis functions of increasing order.

" 0 0 .
3 S 8
- -

0.90 0.95 1.00
L L L

0.85
L

second-order polynomial model fourth-order polynomial model sixth-order polynomial model
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Polynomial Basis Functions

We have already seen some basis functions. Here are OLS fits with
polynomial basis functions of increasing order.

" 0 0 .
3 S 8
- -

1.00

1.00

1.00
L

0.95

0.90
0.90
0.90

0.85
0.85
L
0.85
L

second-order polynomial model fourth-order polynomial model sixth-order polynomial model

It appears that the last model is too complex and is overfitting a bit.
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Local Basis Functions
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Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over
the whole input space. Often local basis functions are more appropriate.
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Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over
the whole input space. Often local basis functions are more appropriate.

One choice is a Gaussian basis function

¢j(x) = exp(—(x — 17)?)/25°)
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Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over
the whole input space. Often local basis functions are more appropriate.

One choice is a Gaussian basis function

¢j(x) = exp(—(x — 17)?)/25°)

1.0

0.8
1

0.6

0.4

0.2

0.0

T T T
0.0 0.2 0.4 0.6 08 1.0

Gaussian basis functions, s = 0.1
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Gaussian Basis Fits

o . o
8 8
2 . 2
. %
s . s
8 8
2 . 2
0 / . / 0
2 . \ 8
3 3
s s
8 - 8 -
3 3
S o
2 2
K K
T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Gaussian basis funcion fit, s = 0.1 Gaussian basis function fit, s = 0.5 Gaussian basis function fit, s = 25
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Regularization
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Regularization

@ We've seen that flexible models can lead to overfitting
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Regularization

@ We've seen that flexible models can lead to overfitting

@ Two ways to address: limit model flexibility or use a flexible model
and regularize
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Regularization

@ We've seen that flexible models can lead to overfitting

@ Two ways to address: limit model flexibility or use a flexible model
and regularize

@ Regularization is a way of expressing a preference for smoothness in
our function by adding a penalty term to our optimization function.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 99 /127



Regularization

@ We've seen that flexible models can lead to overfitting

@ Two ways to address: limit model flexibility or use a flexible model
and regularize

@ Regularization is a way of expressing a preference for smoothness in
our function by adding a penalty term to our optimization function.

@ Here we will consider a penalty of the form /\ij:_ll sz where \
controls the strength of the penalty.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 99 /127



Regularization

We've seen that flexible models can lead to overfitting

Two ways to address: limit model flexibility or use a flexible model
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controls the strength of the penalty.

The penalty trades off some bias for an improvement in variance

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 99 /127



Regularization

We've seen that flexible models can lead to overfitting

Two ways to address: limit model flexibility or use a flexible model
and regularize

Regularization is a way of expressing a preference for smoothness in
our function by adding a penalty term to our optimization function.
@ Here we will consider a penalty of the form /\ij:_ll sz where A
controls the strength of the penalty.

The penalty trades off some bias for an improvement in variance

The trick in general is how to set A
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Results

Here are the results with A = 0.01:
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Results

Here are the results with A = 0.1:
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Results

Here are the results with A = 1:
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Results

Here are the results with A = 10:

0.0 0.95 1.00 1.05

0.85

0.90 095 1.00 1.05

085

o e
o .
.o / o .
. .
Se . be
. B
. Je

0.0

0.2

04

T
0.6

T
0.8

T
1.0

Gaussian basis function fit, s = 0.1 lambda = 10

Stewart (Princeton)

Week 8: Diagnostics and Solutions

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Gaussian basis function fit, s = 0.5 lambda = 10

0.0 0.2 04 0.6 0.8 1.0

Gaussian basis function fit, s = 2.5 lambda = 10

October 19-23, 2020

100 /127



Conclusions from This Example
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Conclusions from This Example

@ we can control overfitting by modifying the width of the basis
function s or with penalty
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o we will also need some way to handle multivariate functions.
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Conclusions from This Example

@ we can control overfitting by modifying the width of the basis
function s or with penalty

@ we will need some way in general to tune these

o we will also need some way to handle multivariate functions.
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Generalized Additive Models (GAM)

Recall the linear model,

yi = Bo + x1i81 + x0i 2 + x3i 53 + u;
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Generalized Additive Models (GAM)

Recall the linear model,

yi = Bo + x1i81 + x0i 2 + x3i 53 + u;

For GAMs, we maintain additivity, but instead of imposing termwise
linearity we allow flexible functional forms for each explanatory variable,
where s1(+),s2(+), and s3(-) are smooth functions that are estimated from

the data:
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Generalized Additive Models (GAM)

Recall the linear model,

yi = Bo + x1i81 + x0i 2 + x3i 53 + u;

For GAMs, we maintain additivity, but instead of imposing termwise
linearity we allow flexible functional forms for each explanatory variable,
where s1(+),s2(+), and s3(-) are smooth functions that are estimated from

the data:
yi = Bo + s1(x1i) + s2(x2i) + s3(x3i) + uj
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Generalized Additive Models (GAM)
¥i = Bo + s1(x1i) + s2(xai) + s3(x3i) + u;

@ GAMS are semi-parametric, they strike a compromise between
nonparametric methods and parametric regression
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@ GAMS are semi-parametric, they strike a compromise between
nonparametric methods and parametric regression

@ sj(-) are usually estimated with locally weighted regression smoothers or
cubic smoothing splines (but many approaches are possible)
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Generalized Additive Models (GAM)
¥i = Bo + s1(x1i) + s2(xai) + s3(x3i) + u;

@ GAMS are semi-parametric, they strike a compromise between
nonparametric methods and parametric regression

@ sj(-) are usually estimated with locally weighted regression smoothers or
cubic smoothing splines (but many approaches are possible)

@ They do NOT give you a set of regression parameters /3’ Instead one obtains
a graphical summary of how E[Y|X Xa, ..., Xi] varies with X; (estimates of
sj(+) at every value of X; ;)
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Generalized Additive Models (GAM)
¥i = Bo + s1(x1i) + s2(xai) + s3(x3i) + u;

@ GAMS are semi-parametric, they strike a compromise between
nonparametric methods and parametric regression

s;(+) are usually estimated with locally weighted regression smoothers or
cubic smoothing splines (but many approaches are possible)

@ They do NOT give you a set of regression parameters /3’ Instead one obtains
a graphical summary of how E[Y|X Xa, ..., Xi] varies with X; (estimates of
sj(+) at every value of X; ;)

Theory and estimation are somewhat involved, but they are easy to use:

» gam.out <- gam(y~s(x1)+s(x2)+x3)
plot(gam.out)

» Multiple functions but | recommend mgcv package
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Generalized Additive Models (GAM)

The GAM approach can be extended to allow interactions (s12(+)) between

explanatory variables, but this eats up degrees of freedom so you need a
lot of data.

yi = Bo + si2(x1j, x2i) + s3(x3i) + uj
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Generalized Additive Models (GAM)

The GAM approach can be extended to allow interactions (s12(+)) between

explanatory variables, but this eats up degrees of freedom so you need a
lot of data.

yi = Bo + si2(x1j, x2i) + s3(x3i) + uj

It can also be used for hybrid models where we model some variables as
parametrically and other with a flexible function:

yi = Bo + Pix1i + so(x0i) + s3(x3;) + uj
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GAM Fit to Attitudes Toward Immigration

1.0

Linear Predictor s(educ)

educational attainment
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GAM Fit to Attitudes Toward Immigration

1.0

Linear Predictor s(age)
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Attitudes Toward Immigration
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Concluding Thoughts
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Concluding Thoughts

@ Non-linearity is pretty easy to detect and can substantially change our
inferences
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@ Non-linearity is pretty easy to detect and can substantially change our
inferences

@ GAMs are a great way to model/detect non-linearity but
transformations are often simpler
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Concluding Thoughts

@ Non-linearity is pretty easy to detect and can substantially change our
inferences

@ GAMs are a great way to model/detect non-linearity but
transformations are often simpler

@ However, be wary of the global properties of transformations and
polynomials
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@ Non-linearity is pretty easy to detect and can substantially change our
inferences

@ GAMs are a great way to model/detect non-linearity but
transformations are often simpler

@ However, be wary of the global properties of transformations and
polynomials

@ Non-linearity concerns are most relevant for continuous covariates
with a large range (age)
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Concluding Thoughts

Non-linearity is pretty easy to detect and can substantially change our
inferences

GAM s are a great way to model/detect non-linearity but
transformations are often simpler

However, be wary of the global properties of transformations and
polynomials

@ Non-linearity concerns are most relevant for continuous covariates
with a large range (age)
o NB: it is okay if you didn't follow all of this today! GAMs are tricky.
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We Covered
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We Covered

@ Linear basis function models.
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We Covered

@ Linear basis function models.
@ Generalized Additive Models.
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We Covered

@ Linear basis function models.
@ Generalized Additive Models.

Next Time: Clustering
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Where We've Been and Where We're Going...

Last Week
» multiple regression
This Week
» diagnosing problems and troubleshooting the linear model
» unusual and influential data — robust estimation
> non-linearity — generalized additive models
» unusual errors — sandwich SEs
Next Week
» frameworks for causal inference
Long Run
> probability — inference — regression — causal inference
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@ Thinking About Problems
© Non-Normality

© Extreme Values
@ Outliers
@ Leverage Points
@ Influence Points

@ Robust Regression Methods
@ Appendix: Robustness

© Nonlinearity
@ Linear Basis Function Models

@ Generalized Additive Models

@ Clustering
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@ Clustering
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Clustered Dependence: Intuition
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Clustered Dependence: Intuition

@ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.
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@ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

@ Their design: randomly sample households and randomly assign them
to different treatment conditions
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Clustered Dependence: Intuition

@ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

@ Their design: randomly sample households and randomly assign them
to different treatment conditions

@ But the measurement of turnout is at the individual level
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@ Violation of iid/random sampling:
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Clustered Dependence: Intuition

@ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

@ Their design: randomly sample households and randomly assign them
to different treatment conditions

@ But the measurement of turnout is at the individual level

@ Violation of iid/random sampling:
» errors of individuals within the same household are correlated
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Clustered Dependence: Intuition

@ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

@ Their design: randomly sample households and randomly assign them
to different treatment conditions

@ But the measurement of turnout is at the individual level

@ Violation of iid/random sampling:

» errors of individuals within the same household are correlated
» ~~ violation of homoskedasticity
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Clustered Dependence: Intuition

@ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

@ Their design: randomly sample households and randomly assign them
to different treatment conditions

@ But the measurement of turnout is at the individual level

@ Violation of iid/random sampling:

» errors of individuals within the same household are correlated
» ~~ violation of homoskedasticity

o Called clustering or clustered dependence
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Clustered Dependence: notation

o Clusters: j=1,....m
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Clustered Dependence: notation

o Clusters: j=1,....m

@ Units: i=1,...,n;
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Clustered Dependence: notation

o Clusters: j=1,....m
@ Units: i=1,...,n;

@ nj is the number of units in cluster j

Stewart (Princeton) Week 8: Diagnostics and Solutions



Clustered Dependence: notation

o Clusters: j=1,....m

@ Units: i=1,...,n;

@ nj is the number of units in cluster j
°

n =), nj is the total number of units
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Clustered Dependence: notation

Clusters: j=1,...,m

Units: i =1,...,n;

(-]

(-]

@ nj is the number of units in cluster j
® n=)_;njis the total number of units
°

Units (usually) belong to a single cluster:
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Clustered Dependence: notation

Clusters: j=1,...,m

Units: i =1,...,n;

(-]

(-]

@ nj is the number of units in cluster j
® n=)_;njis the total number of units
°

Units (usually) belong to a single cluster:
» voters in households

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19-23, 2020 115 /127



Clustered Dependence: notation

Clusters: j=1,...,m

Units: i =1,...,n;

(-]

(-]

@ nj is the number of units in cluster j
® n=)_;njis the total number of units
°

Units (usually) belong to a single cluster:
» voters in households
» individuals in states
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Clustered Dependence: notation

Clusters: j=1,...,m
Units: i =1,...,n;

(-]

(-]

@ nj is the number of units in cluster j
® n=)_;njis the total number of units
°

Units (usually) belong to a single cluster:
» voters in households
» individuals in states
» students in classes
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Clustered Dependence: notation

Clusters: j=1,...,m
Units: i =1,...,n;

(-]

(-]

@ nj is the number of units in cluster j
® n=)_;njis the total number of units
°

Units (usually) belong to a single cluster:
» voters in households
» individuals in states
» students in classes
» rulings in judges
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Clustered Dependence: notation

Clusters: j=1,...,m

Units: i =1,...,n;

n; is the number of units in cluster j

n =), nj is the total number of units

Units (usually) belong to a single cluster:

>

>
>
>

voters in households
individuals in states
students in classes
rulings in judges

Especially important when outcome varies at the unit-level, y;; and
the main independent variable varies at the cluster level, x;.
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Clustered Dependence: notation

Clusters: j=1,...,m

Units: i =1,...,n;

n; is the number of units in cluster j

n =), nj is the total number of units

Units (usually) belong to a single cluster:

>

>
>
>

voters in households
individuals in states
students in classes
rulings in judges

Especially important when outcome varies at the unit-level, y;; and
the main independent variable varies at the cluster level, x;.

Ignoring clustering is “cheating”: units not independent
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Clustered Dependence: Example Model
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Clustered Dependence: Example Model

Yij = Bo + Bixij +€jj
:ﬂ0+ﬂ1X,j+Vj+u,'j
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Clustered Dependence: Example Model

Yij = Bo + Bixij +€jj
:ﬂ0+ﬁ1X,j+Vj+u,'j

iid
e v; ~ N(0, po?) cluster error component
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Clustered Dependence: Example Model

Yij = Bo + Bixij +€jj
:Bo+ﬁ1X,:,'+\/j+u,'j

iid
e v; ~ N(0, po?) cluster error component

° ujj i N(O, (1 — p)o?) unit error component
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Clustered Dependence: Example Model

Yij = Bo + Bixij +€jj
:50+51XU+VJ‘+UU

o
oy “% N(0, po?) cluster error component

o _
o u; ~ N(0,(1— p)o?) unit error component

@ v; and uj; are assumed to be independent of each other
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Clustered Dependence: Example Model

Yij = Po + Pixij + €jj
= Po + Bixij + vi + uj
vj i N(0, po?) cluster error component

o u; Y N(0, (1 p)o?) unit error component

vj and uj; are assumed to be independent of each other

p € (0,1) is called the within-cluster correlation.
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Clustered Dependence: Example Model

Yij = Po + Pixij + €jj
= Po + Bixij + vi + uj
vj i N(0, po?) cluster error component

ui " N(0. (1~ p)o?) unit error component

vj and uj; are assumed to be independent of each other

p € (0,1) is called the within-cluster correlation.

What if we ignore this structure and just use ¢ as the error?
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Clustered Dependence: Example Model

Yij = Bo + Bixij +€jj
:BO+51XU‘|“G‘|‘UU

»
o v; = N(0, po?) cluster error component

jid .
uj ~ N(0, (1 — p)o?) unit error component
vj and uj; are assumed to be independent of each other

o
o
@ p€(0,1) is called the within-cluster correlation.
@ What if we ignore this structure and just use ¢;; as the error?
°

Variance of the composite error is o

Var[ejj] = Var[v; + ujj]
= Var[v;] + Var[uj]

= po? + (1 —p)o? =02
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Lack of Independence

e Covariance between two units i and s in the same cluster is po?:

Covlejj, e5] = po?
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Lack of Independence

e Covariance between two units i and s in the same cluster is po?:
2
Covlejj, eqj] = po
@ Correlation between units in the same group is just p:

COF[&,‘_,‘, ESJ'] =p
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Lack of Independence

e Covariance between two units i and s in the same cluster is po?:
Covlejj, e5] = po?
@ Correlation between units in the same group is just p:
Corlej,eq] = p
@ Zero covariance of two units i and s in different clusters j and k:

Covlejj, esk] =0
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Example Covariance Matrix

/
e=[e11 €21 €31 €a2 €52 62 |

[ 02 o%2-p 0%>-p O 0 0 ]
o2-p o®> o%.p 0 0 0
o%-p o2 o? 0 0 0
Var[e] = X = 0'0 Op 0 LR S
0 0 0 a2-p o®> d%.p
. O 0 0 od%2-p 0%-p o% |
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Appendix: Example 6 Units, 2 Clusters

e=[ a1 1 e31

V=1 4]
Cov[ey 1,20 1]
Cov[=1 1,251]

Viel == = Cov[ey 1,¢24.0]
Cov[=1 1,25 2]
Cov[ey 1,26,0]
o2 o2 P o2 P
o - p o? o2 -p
_ o - p o2 - P o?
B 0 0 0
0 0 0
0 0 0

which can be verified as follows:

@ V[l = VI + uj]l = VIl + V]yj] = po? + (1 — p)o? = o2

€4,2

Cov[=o 1,21 .1]
Vie2.1]
Cov[=o 1,231]
Cov[er 1,24 0]
Cov[=s 1, 252]
Cov[en 1, 26.2]

0 0
0 0
0 0
o? o?
2. P o?
2. P 2.

es2  c6,2 )’

Cov[=s.1,21.1]
Cov[es 1,20 1]
V=]
Cov[es 1, ea,
Cov[=s 1,65,
Cov[es 1, 6.2]

V[ea o]
Cov[=y 2, 25.0]
Covles 2, c6,0]

@ Covl:jj, =] = E[==] — E[=j]E[=y] = El==] = El(v; + uy)(vj + uy)]
= E[V,-2] + E[vjuj] + Elvjuy] + Elujjuy)
= E[v;?] + E[v;]E[u;] + E[v;]E[uy] + E[uy]E[uy]

= E[v] = V[y] + (E[y}])* = VIy] = po?

@ Covlejj, =) = El=j=n] — E[=5]1E[= 1) = El=j=0] = EN(vj + i) (vic + upe)]

= E[vjvi] + Elvjui] + Elviu;] + E[ujuy]

= E[vj]E[vk] + E[v;IE[u] + E[vk]E[uj] + Eluj]E[ug] = 0
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Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, 3, is block diagonal:
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Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, 3, is block diagonal:

@ By independence, the errors are uncorrelated across clusters:

0

0

;10
0 |3
Vle] =X =
00
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Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, 3, is block diagonal:

@ By independence, the errors are uncorrelated across clusters:

1] 0 0

0|3 0
Vle] =X =

0|0 M

@ But the errors may be correlated for units within the same cluster:
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Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, 3, is block diagonal:

@ By independence, the errors are uncorrelated across clusters:

1/ 0]...1 0

0 3 |...] 0
Vle] =X =

00 |...|2um

@ But the errors may be correlated for units within the same cluster:

o> o%-p ... d%p

a>-p o®> ... o%*-p
% =

o2-p a2 p 52
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Correcting for Clustering
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Correcting for Clustering

@ Including a dummy variable for each cluster
(fixed effects)
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Correcting for Clustering

@ Including a dummy variable for each cluster
(fixed effects)

@ “Random effects” models
(take above model as true and estimate p and o)
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Correcting for Clustering

@ Including a dummy variable for each cluster
(fixed effects)

@ “Random effects” models
(take above model as true and estimate p and o)

© Cluster-robust (“clustered”) standard errors
O Aggregate data to the cluster-level and use OLS y; = nijz, Yii

> If n; varies by cluster, then cluster-level errors will have
heteroskedasticity
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Cluster-Robust SEs

o First, let's write the within-cluster regressions like so:

yj=XiB+ej
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@ We assume that respondents are independent across clusters, but
possibly dependent within clusters. Thus, we have

Varlej|X)] = %
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@ y; is the vector of responses for cluster j, and so on
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Cluster-Robust SEs

o First, let's write the within-cluster regressions like so:
yj=XiB+ej

@ y; is the vector of responses for cluster j, and so on

@ We assume that respondents are independent across clusters, but
possibly dependent within clusters. Thus, we have

Var[ej|Xj] =X
@ Remember our sandwich expression:
Var[B1X] = (X'X) "' x'=X (X'X)

@ Under this clustered dependence, we can write this as:

Var[3|X] = (X'X)~ Zx'zx (x'’x)~*
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Estimating the Variance Components: p and o2

The overall error variance o2 is easily estimated using our usual estimator based

. R S é'é
on the regression residuals: 7° = 555+
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Estimating the Variance Components: p and o2

The overall error variance o2 is easily estimated using our usual estimator based
. . o~ gl 2
on the regression residuals: 72 = 5£

N—k—1

The within-cluster correlation can be estimated as follows:

@ Subtract from each residual ;; the mean residual within its cluster. Call this
vector of demeaned residuals €, which estimates the unit error component u
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Estimating the Variance Components: p and o2

The overall error variance o2 is easily estimated using our usual estimator based

: : a2 e
on the regression residuals: 7° = 555+

The within-cluster correlation can be estimated as follows:

@ Subtract from each residual ;; the mean residual within its cluster. Call this
vector of demeaned residuals €, which estimates the unit error component u

H . {:2 ~/ ~ .
@ Compute the variance of the demeaned residuals as: ¢ = y—4=5—7, which
estimates (1 — p)o?
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Estimating the Variance Components: p and o2

The overall error variance o2 is easily estimated using our usual estimator based

: : a2 e
on the regression residuals: 7° = 555+

The within-cluster correlation can be estimated as follows:

@ Subtract from each residual ;; the mean residual within its cluster. Call this
vector of demeaned residuals €, which estimates the unit error component u

H . {:2 ~/ ~ .
@ Compute the variance of the demeaned residuals as: ¢ = y—4=5—7, which
estimates (1 — p)o?

2

. . . . ~ 52_75
© The within cluster correlation is then estimated as: p = <=
o
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Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:
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Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:

@ Take your estimates of 02 and p and construct the block diagonal
variance-covariance matrix :

1/ 0 |...| 0 o2 o%2.p o2-p
~ 0 |3|...] 0 o~ o2-p o2 a?-p
Y= with 3; =
0|0 b7V o2-p o2-p o?
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Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:

@ Take your estimates of 02 and p and construct the block diagonal
variance-covariance matrix 3:

s.lol...] o 02 o2 P o2-p
. 0, ]...] 0 | 025 o2 025
s = with 33 = P P
00 |...[=y 025 025 ... o2

@ Plug X into the sandwich estimator to obtain the cluster “corrected”
estimator of the variance-covariance matrix

VIBIX] = (X'X) ' X'EX (X'X) !
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Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:

@ Take your estimates of 02 and p and construct the block diagonal
variance-covariance matrix 3:

s:|lof...] o0 2 o2 P o2
~ 0|3 o~ o2-p o2 o
Y= with 3; =

olo]... [=y 25 o2-p o

@ Plug X into the sandwich estimator to obtain the cluster “corrected”
estimator of the variance-covariance matrix

VIBIX] = (X'X) ' X'EX (X'X) !
@ There are multiple implementations in R including
multiwayvcov:cluster.vcov and sandwich: :vcovCL
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Cluster-Robust Standard Errors

@ CRSE do not change our estimates ,@ cannot fix bias
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Cluster-Robust Standard Errors

CRSE do not change our estimates B cannot fix bias

e CRSE is consistent estimator of Var[3] given clustered dependence
» Relies on independence between clusters, dependence within clusters
» Doesn't depend on the model we present
» CRSEs usually > conventional SEs—use when you suspect clustering

Consistency of the CRSE are in the number of groups, not the
number of individuals
» CRSEs can be incorrect with a small (< 50 maybe) number of clusters
(often biased downward)
» Block bootstrap can be a useful alternative (key idea: bootstrap by
resampling the clusters)
@ There are numerous alternative clustered standard error variants out
there.
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Concluding Thoughts on Diagnostics

Residuals are important. Look at them.
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This Week in Review
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This Week in Review

@ We talked about troubleshooting the linear model—few black and
white answers but many tools for the toolkit.
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This Week in Review

@ We talked about troubleshooting the linear model—few black and
white answers but many tools for the toolkit.

@ | completely understand than many people won't have all the details
of robust regression, generalized additive models or clustered standard
errors.
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This Week in Review

@ We talked about troubleshooting the linear model—few black and
white answers but many tools for the toolkit.

@ | completely understand than many people won't have all the details
of robust regression, generalized additive models or clustered standard
errofrs.

o It is useful to know

(a) these tools exist.
(b) roughly what problem they help solve.
(c) approximately why they work.

@ The problem set will give you a chance to practice many of these
things.

@ There are plenty of other techniques out there (particularly for
modeling non-linearity).

Next week: Frameworks for Causal Inference!
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