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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This Week
I diagnosing problems and troubleshooting the linear model
I unusual and influential data → robust estimation
I non-linearity → generalized additive models
I unusual errors → sandwich SEs

Next Week
I frameworks for causal inference

Long Run
I probability → inference → regression → causal inference
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1 Thinking About Problems

2 Non-Normality

3 Extreme Values
Outliers
Leverage Points
Influence Points

4 Robust Regression Methods
Appendix: Robustness

5 Nonlinearity
Linear Basis Function Models
Generalized Additive Models

6 Clustering
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Pulling Back the Curtain

There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

We skew a bit more towards the latter, because most people won’t
continue to study methods long term—I want your knowledge to stay
current as long as possible!

Towards the beginning of the course there is a lot of material that is
simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.

This week we will talk about how to diagnose and fix problems which
is naturally a pretty context-specific activity.

Today is setting the table for how we think about that problem. I
think this is philosophically interesting and you may want to revisit at
the end of the week.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 4 / 127



Pulling Back the Curtain

There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

We skew a bit more towards the latter, because most people won’t
continue to study methods long term—I want your knowledge to stay
current as long as possible!

Towards the beginning of the course there is a lot of material that is
simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.

This week we will talk about how to diagnose and fix problems which
is naturally a pretty context-specific activity.

Today is setting the table for how we think about that problem. I
think this is philosophically interesting and you may want to revisit at
the end of the week.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 4 / 127



Pulling Back the Curtain

There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

We skew a bit more towards the latter, because most people won’t
continue to study methods long term—I want your knowledge to stay
current as long as possible!

Towards the beginning of the course there is a lot of material that is
simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.

This week we will talk about how to diagnose and fix problems which
is naturally a pretty context-specific activity.

Today is setting the table for how we think about that problem. I
think this is philosophically interesting and you may want to revisit at
the end of the week.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 4 / 127



Pulling Back the Curtain

There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

We skew a bit more towards the latter, because most people won’t
continue to study methods long term—I want your knowledge to stay
current as long as possible!

Towards the beginning of the course there is a lot of material that is
simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.

This week we will talk about how to diagnose and fix problems which
is naturally a pretty context-specific activity.

Today is setting the table for how we think about that problem. I
think this is philosophically interesting and you may want to revisit at
the end of the week.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 4 / 127



Pulling Back the Curtain

There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

We skew a bit more towards the latter, because most people won’t
continue to study methods long term—I want your knowledge to stay
current as long as possible!

Towards the beginning of the course there is a lot of material that is
simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.

This week we will talk about how to diagnose and fix problems which
is naturally a pretty context-specific activity.

Today is setting the table for how we think about that problem. I
think this is philosophically interesting and you may want to revisit at
the end of the week.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 4 / 127



Pulling Back the Curtain

There is a pedagogical tension between teaching you to be conversant
in the field as it is now and preparing you for methods of the future.

We skew a bit more towards the latter, because most people won’t
continue to study methods long term—I want your knowledge to stay
current as long as possible!

Towards the beginning of the course there is a lot of material that is
simply foundational material you simply need to know, but we are
starting to get into the practice of statistics and research which
means fewer black and white answers.

This week we will talk about how to diagnose and fix problems which
is naturally a pretty context-specific activity.

Today is setting the table for how we think about that problem. I
think this is philosophically interesting and you may want to revisit at
the end of the week.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 4 / 127



Five Themes

(1) Clearly define your goal.

(2) Examine your model.

(3) Diagnosis through treatment.

(4) Don’t expect a free lunch.

(5) Re-examine defaults.
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(1) Clearly Define Your Goal

Best practices are rarely best for all applications, people generally
have a distribution of applications in mind when they give advice so
best to be specific about your application.

When thinking about whether an estimator is biased, always think
‘biased with respect to what?’

Predictive generalization is one unifying way to solve questions about
what is best (particularly in machine learning).

You may not know how to precisely define your goal yet (last few
weeks are about causal goals). That’s okay!
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(2) Examine Your Model

Residuals are important. Look at them.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 7 / 127



(2) Examine Your Model

Residuals are important. Look at them.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 7 / 127



(2) Examine Your Model

There are so many ways that something can go wrong, particularly
when you don’t know every nuance of the data.

Examining the model helps us detect cases where assumptions have
failed to hold or data is contaminated.

A challenge is that this formally disrupts most inference infrastructure
which assumes you fix models a priori and only do one test.

Double checking that that things haven’t gone horribly wrong is most
likely okay, but there is always a slippery slope argument that leads to
what Gelman calls the ‘garden of forking paths.’

There is always an inherent risk in looking at the data more than
once. ‘Double dipping’ can be a serious problem.

One way out of this we won’t discuss is train-test splits.
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(3) Diagnosis Through Treatment

When diagnosing problems it can often be hard to tell how
consequential they are.

One strategy is diagnosis through treatment, i.e. we just use a
procedure that would address the problem and see if it changes our
conclusions rather than diagnosing in the first place.

We will use this strategy to replace formal diagnostics in a few
different places this week.

The downside to this approach is that sometimes you end up less
clear about what the problem was in the first place.

We will talk about successes of this approach but also some
catastrophic failures.
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(4) Don’t Expect a Free Lunch

Most things I show you will have tradeoffs.

This shouldn’t be a surprise—if we had a procedure that uniformly
dominated all others I wouldn’t show you options, I’d just show you
the one.

Common tradeoffs include:
I bias vs. variance
I interpretability vs. flexibility
I data dependence vs. assumption dependence
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(5) Re-Examine Defaults

In many ways statistics is the science of defaults.

Defaults are hugely important because people rarely change defaults.

For example, arguably we all use classical standard errors because
that’s what lm() produces. This is way packages like estimatr use
robust standard errors by default.

But remember, different solutions are better for different
settings—defaults are a function of their time and context.

The history of 20th century social science is defined by scarcity—data
was hard to find, surveys were costly to field, computing resources
were expensive and difficult to access. The methods we use are a
consequence of that scarcity.

But now we have abundance—new forms of data, cheap surveys,
huge computation! It is changing the methods we consider.
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Topics We Will Cover

Non-Normal Errors

Extreme Values

Robust Regression

Non-linearity

Clustering

Regrettably we won’t have time to cover two important areas: missing
data and sensitivity analysis.
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We Covered

Five themes for thinking about problems.

Next Time: Non-normal Errors!
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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This Week
I diagnosing problems and troubleshooting the linear model
I unusual and influential data → robust estimation
I non-linearity → generalized additive models
I unusual errors → sandwich SEs

Next Week
I frameworks for causal inference

Long Run
I probability → inference → regression → causal inference
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1 Thinking About Problems

2 Non-Normality

3 Extreme Values
Outliers
Leverage Points
Influence Points

4 Robust Regression Methods
Appendix: Robustness

5 Nonlinearity
Linear Basis Function Models
Generalized Additive Models

6 Clustering
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Review of the Normality assumption

In matrix notation:
u|X ∼ N (0, σ2

uI)

Equivalent to:
ui |x′i ∼ N (0, σ2

u)

Fix x′i and the distribution of errors are Normal.
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Consequences of non-Normal Errors?

In small samples:

I Sampling distribution of β̂ will not be Normal
I Test statistics will not have t or F distributions
I Probability of Type I error will not be α
I 1− α confidence interval will not have 1− α coverage

In large samples:

I Sampling distribution of β̂ ≈ Normal by the CLT
I Test statistics will be ≈ t or F by the CLT
I Probability of Type I error ≈ α
I 1− α confidence interval will have ≈ 1− α coverage

The sample size (n) needed for approximation to hold depends on
how far the errors are from Normal.

Reasonable question: if we have enough data are non-normal errors
even a problem?
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Clarifying a Point of Confusion: Marginal versus
Conditional

Be careful with this assumption: distribution of the error, not the
distribution of the outcome is the key assumption

The marginal distribution of y can be non-Normal even if the
conditional distribution is Normal!

The plausibility depends on the X chosen by the researcher.
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Example: Is this a Violation?
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How to Diagnose?

Assumption is about unobserved errors u = y − Xβ

We can only observe residuals, û = y − Xβ̂

If distribution of residuals ≈ distribution of errors, we could check
residuals as a proxy for the errors.

Unfortunately, this is not true—the distribution of the residuals is
more complicated

Solution: Carefully investigate the residuals numerically and graphically.

To understand the relationship between residuals and errors, we need to
derive the distribution of the residuals (which we will do over the next few
slides).
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Defining the Hat Matrix

We want to figure out how the distribution of errors u relates to the
distribution of residuals û.

To get there let’s write û in terms of y , then we will be able to
replace y with Xβ + u.

û = y − Xβ̂

= y − X
(
X′X

)−1
X′y

≡ y −Hy

= (I−H)y

H = X (X′X)−1 X′ is the hat matrix because it puts the “hat” on y:

ŷ = Hy

it has a few nice properties:
I H is an n × n symmetric matrix
I H is idempotent: HH = H
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Relating the Residuals to the Errors

With the hat matrix, we are ready to relate the residuals to the errors.

û = (I−H)(y)

= (I−H)(Xβ + u)

= (I−H)Xβ + (I−H)u

= IXβ − X
(
X′X

)−1
X′Xβ + (I−H)u

= Xβ − Xβ + (I−H)u

= (I−H)u

Residuals û are a linear function of the errors, u.

For instance,

û1 = (1− h11)u1 −
n∑

i=2

h1iui

Note that each residual is a function of all of the errors.
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Residuals û are a linear function of the errors, u.

For instance,
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Characterizing the Distribution of the Residuals

What can we say about the distribution of the residuals now that we have
the expression: û = (I−H)u.

E [û] = (I−H)E [u] = 0

V [û] = σ2
u(I−H)

The variance of the ith residual ûi is V [ûi ] = σ2(1− hii ), where hii is the
ith diagonal element of the matrix H (called the hat value).
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Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

1 are not independent
(because they must satisfy the two constraints

∑n
i=1 ûi = 0 and∑n

i=1 ûixi = 0)

2 do not have the same variance.
The variance of the residuals varies across data points
V [ûi ] = σ2(1− hii ), even though the unobserved errors all have the
same variance σ2

These properties make it hard to learn about the errors (which our
assumptions are about and we don’t have access to) from our residuals
(which we have estimated and can examine).
This is inconvenient for diagnostics.

What if we could transform the residuals to address the two issues above?

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 24 / 127



Properties of the Distribution of Residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

1 are not independent
(because they must satisfy the two constraints

∑n
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Standardized Residuals

Let’s address the second problem (unequal variances) by standardizing ûi ,
i.e., dividing by unit i ’s estimated standard deviation.

This produces standardized (or “internally studentized”) residuals:

û′i =
ûi

σ̂
√

1− hii

where σ̂ =
√
σ̂2 and σ̂2 = û′û

n−(k+1) is our usual estimate of the error
variance.

The standardized residuals are still not ideal, since the numerator and
denominator of û′i are not independent. This makes the distribution of û′i
nonstandard. If the distribution is non-standard, we can’t easily check for
violations.
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denominator of û′i are not independent. This makes the distribution of û′i
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Studentized Residuals

If we remove observation i from the estimation of σ2, then we can
eliminate the dependence and the result will have a standard distribution.

estimate error variance without residual i :

σ̂2
−i =

û′û− û2
i /(1− hii )

n − k − 2

Use this i-free estimate to standardize, which creates the studentized
residuals:

û∗i =
ûi

σ̂−i
√

1− hii

If the errors are Normal, the studentized residuals, û∗i , follow a t
distribution with (n − k − 2) degrees of freedom.

Deviations from this t distribution of the residuals imply violation of
Normality in the errors.
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distribution with (n − k − 2) degrees of freedom.

Deviations from this t distribution of the residuals imply violation of
Normality in the errors.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 26 / 127



Studentized Residuals

If we remove observation i from the estimation of σ2, then we can
eliminate the dependence and the result will have a standard distribution.

estimate error variance without residual i :

σ̂2
−i =
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Example: Buchanan votes in Florida, 2000

Wand et al. show that the ballot caused 2, 000 Democratic voters to vote
by mistake for Buchanan, a number more than enough to have tipped the
vote in FL from Bush to Gore, thus giving him FL’s 25 electoral votes and
the presidency.
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county supplied 19.6% of Buchanan’s votes in Florida.
In contrast, only 5.4% of his Florida votes came from
PBC in the 1996 Republican presidential primary,
which did not use a butterfly ballot.4

The butterfly ballot, shown in Figure 1, was an
innovation of Theresa LePore, Supervisor of Elections
for PBC.5 The distinctive format was used only in PBC
and only for election-day ballots for president. It is a
“butterfly” because two columns of names of candi-
dates (the wings of the butterfly), all for the same
office, sandwich a single column of punch holes be-
tween the names. These punch holes are alternately for
the left-hand and right-hand side of the ballot. Thus,
the first valid punch hole (identified on the ballot as
#3) is for Bush, the first candidate on the left-hand
side. The second valid punch hole (identified on the
ballot as #4) is for Buchanan, the first candidate on the
right-hand side. On the left, however, the second

candidate listed is Gore, and someone who scanned
down the left-hand column without looking to the right
could mistakenly conclude that the first two punch
holes corresponded, respectively, to Bush and Gore.
Having made such an incorrect reading, a Bush voter
would still be likely to punch the first hole, but a Gore
voter might mistakenly punch the second and vote for
Buchanan.

Sinclair et al. (2000) report experimental evidence
that a double-column ballot format like the one used in
PBC can be more confusing and cause more voter
errors than a single-column ballot. Other published
research on the effects of ballot design is scarce and
does not provide much guidance regarding the errors
the PBC butterfly ballot may have induced (Campbell
and Miller 1957; Darcy 1986; Hamilton and Ladd
1996).

Did the butterfly ballot cost Gore the presidency?
The lawsuits filed by citizens of PBC were thrown out
because the Supreme Court of Florida ruled that the
ballot was not illegal,6 but the ruling neither depended
upon nor implied anything about the ballot’s effect on

a groundswell of support for Buchanan in a place even he concedes
is not his base.”
4 In 2000, Buchanan received 0.787% of the presidential vote in PBC
while garnering only 0.3% of the overall Florida presidential vote. In
contrast, Ross Perot, the Reform candidate for president in 1996,
received only 7.7% of the PBC vote and garnered 9.1% of the Florida
vote. These data are from the Florida Department of State.
5 Reportedly, LePore “split the names over two pages to make the
type larger.” Two days after the election she was quoted as saying:
“Hindsight is 20-20, but I’ll never do it again” (Engelhardt 2000).
Merzer and Miami Herald (2001) describe how LePore went about
designing the ballot and many other defects in the administration of
the election in Florida.

6 The court stated: “Even accepting appellants’ allegations, we
conclude as a matter of law that the Palm Beach County ballot does
not constitute substantial noncompliance with the statutory require-
ments mandating the voiding of the election” (Supreme Court of
Florida, Fladell, et al. v. Palm Beach County Canvassing Board, etc. et
al. Case Nos. SC 00-2373 and SC 00-2376). The cases did not
progress to hearings regarding the facts.

FIGURE 1. The Palm Beach County Bufferfly Ballot

Source: AP Worldwide Photos, Gary I. Rothstein. Reprinted with permission.

The Butterfly Did It: The Aberrant Vote for Buchanan in Palm Beach County, Florida December 2001
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Example: Buchanan Votes in Florida

Now that our studentized residuals follow a known standard
distribution, we can proceed with diagnostic analysis for the
nonnormal errors.

We examine data from the 2000 presidential election in Florida used
in Wand et al. (2001).

Our analysis takes place at the county level and we will regress the
number of Buchanan votes in each county on the total number of
votes in each county.
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votes in each county.
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Buchanan Votes and Total Votes
R Code

> mod1 <- lm(buchanan00~TotalVotes00,data=dta)

> summary(mod1)

Residuals:

Min 1Q Median 3Q Max

-947.05 -41.74 -19.47 20.20 2350.54

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.423e+01 4.914e+01 1.104 0.274

TotalVotes00 2.323e-03 3.104e-04 7.483 2.42e-10 ***

---

Residual standard error: 332.7 on 65 degrees of freedom

Multiple R-squared: 0.4628, Adjusted R-squared: 0.4545

F-statistic: 56 on 1 and 65 DF, p-value: 2.417e-10

> residuals <- resid(mod1)

> standardized_residuals <- rstandard(mod1)

> studentized_residuals <- rstudent(mod1)

> dotchart(residuals,dta$name,cex=.7,xlab="Residuals")
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Plotting the residuals
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Plotting the residuals
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Plotting the residuals
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Quantile-Quantile plots

How can we easily compare our actual distribution of residuals to the
theoretical distribution?

Quantile-quantile plot or QQ-plot is useful for comparing distributions

Plots the quantiles of one distribution against those of another
distribution

For example, one point is the (mx ,my ) where mx is the median of the
x distribution and my is the median for the y distribution

If distributions are equal =⇒ 45 degree line
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Good QQ-plot
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Buchanan QQ-plot
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How Can we Deal with non-Normal Errors?

Drop or change problematic observations (could be a bad idea unless you
have some reason to believe the data are wrong or corrupted)

Add variables to X (remember that the errors are defined in terms of
explanatory variables)

Use transformations (this may work, but a transformation affects all the
assumptions of the model)

Use estimators other than OLS that are robust to nonnormality (two videos
from now!)
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Buchanan Revisited

Let’s delete Palm Beach and also use log transformations for both variables

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.48597 0.37889 -6.561 1.09e-08 ***

## log(edaytotal) 0.70311 0.03621 19.417 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.4362 on 64 degrees of freedom

## Multiple R-squared: 0.8549, Adjusted R-squared: 0.8526

## F-statistic: 377 on 1 and 64 DF, p-value: < 2.2e-16
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Buchanan Revisited
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Buchanan Revisited
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A Note of Caution About Log Transformations

Log transformations are a standard approach in the literature and
intro regression classes

They are extremely helpful for data that is skewed (e.g. a few very
large positive values)

Generally you want to convert these findings back to the original scale
for interpretation

Remember the complexities of log transforms from Week 5!
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We Covered

Non-Normal Data

Hat Matrix

Transforming Residuals

Next Time: Extreme Values
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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This Week
I diagnosing problems and troubleshooting the linear model
I unusual and influential data → robust estimation
I non-linearity → generalized additive models
I unusual errors → sandwich SEs

Next Week
I frameworks for causal inference

Long Run
I probability → inference → regression → causal inference
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1 Thinking About Problems

2 Non-Normality

3 Extreme Values
Outliers
Leverage Points
Influence Points

4 Robust Regression Methods
Appendix: Robustness

5 Nonlinearity
Linear Basis Function Models
Generalized Additive Models

6 Clustering
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The Trouble with Norway

Lange and Garrett (1985): organizational and political power of labor
interact to improve economic growth

Jackman (1987): relationship just due to North Sea Oil?

Table guide:
I x1 = organizational power of labor
I x2 = political power of labor
I Parentheses contain t-statistics

Constant x1 x2 x1 · x2

Norway Obs Included .814 -.192 -.278 .137
(4.7) (2.0) (2.4) (2.9)

Norway Obs Excluded .641 -.068 -.138 .054
(4.8) (0.9) (1.5) (1.3)
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Creative Curve Fitting with Norway
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The Most Important Lesson: Check Your Data

“Do not attempt to build a model on a set of poor data! In human surveys, one
often finds 14-inch men, 1000-pound women, students with ‘no’ lungs, and so on.
In manufacturing data, one can find 10,000 pounds of material in a 100 pound
capacity barrel, and similar obvious errors.

All the planning, and training in the world will not eliminate these sorts of
problems. In our decades of experience with ‘messy data,’ we have yet to find a
large data set completely free of such quality problems.”

Draper and Smith (1981, p. 418)

Carefully Examine the Data First!!

1 Examine summary statistics: summary(data)

2 Scatterplot matrix for densities and bivariate relationships:
E.g. scatterplotMatrix(data) from car library.

3 Further conditional plots for multivariate data:
E.g. ggplot2
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Three Types of Extreme Values

1 Outlier: extreme in the y direction

2 Leverage point: extreme in one x direction

3 Influence point: extreme in both directions

Not all of these are problematic

If the data are truly “contaminated” (come from a different
distribution), can cause inefficiency and possibly bias

Can be a violation of iid (not identically distributed)
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Outlier Definition

-4 -2 0 2 4
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Without outlier

Full sample

Outlier

An outlier is a data point with very large regression errors, ui

Very distant from the rest of the data in the y -dimension

Increases standard errors (by increasing σ̂2)

No bias if typical in the x ’s
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Detecting Outliers

Look at standardized residuals, û′i?

I but σ̂2 could be biased upwards by the large residual from the outlier
I Makes detecting residuals harder

Possible solution: use studentized residuals

û∗i =
ûi

σ̂−i
√

1− hi

σ̂ > σ̂−i because we drop the large residual from the outlier, and so
û′i < û∗i
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û∗i =
ûi
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Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 47 / 127



Detecting Outliers

Look at standardized residuals, û′i?
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Cutoff Rules for Outliers

The studentized residuals follow a t distribution, u∗i ∼ tn−k−2, when
ui ∼ N(0, σ2)

Rule of thumb: |û∗i | > 2 will be relatively rare

Extreme outliers, |û∗i | > 4− 5 are much less likely

People usually adjust cutoff for multiple testing
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Rule of thumb: |û∗i | > 2 will be relatively rare
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Buchanan outliers
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What to do about outliers

Is the data corrupted?

I Fix the observation (obvious data entry errors)
I Remove the observation
I Be transparent either way

Is the outlier part of the data generating process?

I Transform the dependent variable (log(y))
I Use a method that is robust to outliers (robust regression)

Key question is what is the goal? If you want to estimate the
expectation of a distribution and a property of that distribution is
extreme observations, that’s just part of the story.
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A Cautionary Tale: The “Discovery” of the Ozone Hole

In the late 70s, NASA used an automated data processing program on
satellite measurements of atmospheric data to track changes in atmospheric
variables such as ozone.

This data “quality control” algorithm rejected abnormally low readings of
ozone over the Antarctic as unreasonable.

This delayed the detection of the ozone hole by several years until British
Antarctic Survey scientists discovered it based on analysis of their own
observations (Nature, May 1985).

The ozone hole was detected in satellite data only when the raw data was
reprocessed. When the software was rerun without the pre-processing flags,
the ozone hole was seen as far back as 1976.
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A Sociological Cautionary Tale
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Leverage Point Definition

-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

x

y Without leverage point

Full sample
Leverage Point

Values that are extreme in the x direction

That is, values far from the center of the covariate distribution

Decrease SEs (more X variation)

No bias if typical in y dimension
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Leverage Points: Hat values
To measure leverage in multivariate data we will go back to the hat matrix H:

ŷ = Xβ̂ = X
(
X′X

)−1
X′y = Hy

H is n × n, symmetric, and idempotent. It generates fitted values as follows:

ŷi = h′iy =
[
hi,1 hi,2 · · · hi,n

]


y1

y2

...
yn

 =
n∑

j=1

hi,jyj

Therefore,

hij dictates how important yj is for the fitted value ŷi (regardless of the actual
value of yj , since H depends only on X)

The diagonal entries hii =
∑n

j=1 h
2
ij , so they summarize how important yi is for all

the fitted values. We call them the hat values or leverages and a single subscript
notation is used: hi = hii

Intuitively, the hat values measure how far a unit’s vector of characteristics xi is
from the vector of means of X

Rule of thumb: examine hat values greater than 2(k + 1)/n
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ŷi = h′iy =
[
hi,1 hi,2 · · · hi,n

]


y1

y2

...
yn

 =
n∑

j=1

hi,jyj

Therefore,

hij dictates how important yj is for the fitted value ŷi (regardless of the actual
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Appendix: Facts about Hat Values

∑n
i=1 hi = k + 1

1/n ≥ hi ≥ 1 for all i

Var[ûi ] = (1− hi )σ
2

With a simple linear regression, we have

hi =
1

n
+

(Xi − X )2∑n
j=1(Xj − X )2
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Buchanan hats

Duval
Lee
Broward
Martin
Collier
Dixie
Pinellas
Osceola
Miami-Dade
Alachua
Glades
Leon
Volusia
Highlands
Hendry
St. Lucie
Polk
Madison
Orange
Okeechobee
Lafayette
Desoto
Indian River
Wakulla
Brevard
Manatee
Sarasota
Jefferson
Suwannee
Gulf
Columbia
Walton
Sumter
Pasco
Putnam
St. Johns
Seminole
Franklin
Monroe
Charlotte
Gilchrist
Washington
Marion
Jackson
Flagler
Citrus
Holmes
Clay
Taylor
Union
Lake
Hillsborough
Hernando
Bradford
Calhoun
Nassau
Bay
Baker
Gadsden
Okaloosa
Escambia
Santa Rosa
Levy
Palm Beach
Hamilton
Hardee
Liberty
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Influence points
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Influence Point

An influence point is one that is both an outlier (extreme in Y ) and a
leverage point (extreme in X ).

Causes the regression line to move toward it.
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Detecting Influence Points/Bad Leverage Points

Influence Points:
Influence on coefficients = Leverage × Outlyingness

More formally: Measure the change that occurs in the slope estimates
when an observation is removed from the data set. Let

Dij = β̂j − β̂j(−i), i = 1, . . . , n, j = 0, . . . , k

where β̂j(−i) is the estimate of the jth coefficient from the same
regression once observation i has been removed from the data set.

Dij is called the DFbeta, which measures the influence of observation
i on the estimated coefficient for the jth explanatory variable.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale Dij by the
estimated standard error of the coefficients:

D∗ij =
β̂j − β̂j(−i)
ŜE−i (β̂j)

where D∗ij is called DFbetaS.

D∗ij > 0 implies that removing observation i decreases the estimate of
βj → obs i has a positive influence on βj .

D∗ij < 0 implies that removing observation i increases the estimate of
βj → obs i has a negative influence on βj .

Values of |D∗ij | > 2/
√
n are an indication of high influence.

In R: dfbetas(model)
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Buchanan influence

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.935e+01 5.520e+01 -0.532 0.59686

## edaytotal 1.100e-03 4.797e-04 2.293 0.02529 *

## absnbuchanan 6.895e+00 2.129e+00 3.238 0.00195 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 317.2 on 61 degrees of freedom

## (3 observations deleted due to missingness)

## Multiple R-squared: 0.5361, Adjusted R-squared: 0.5209

## F-statistic: 35.24 on 2 and 61 DF, p-value: 6.711e-11
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Buchanan influence

## (Intercept) edaytotal absnbuchanan

## 1 0.3454475146 0.4050504921 -0.7505222758

## 2 -0.0234266617 -0.0241000045 -0.0131672181

## 3 0.0650795039 -0.7319311820 0.3401669862

## 4 -0.0333980968 0.0133802934 -0.0087505576

## 5 -0.0397626659 -0.0073746223 0.0096551713

## 6 -0.0009277798 0.0001505476 0.0002210247
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Buchanan influence
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Palm Beach county moves each of the coefficients by more than 3
standard errors!
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Summarizing Influence across All Coefficients

Leverage tells us how much one data point affects a single coefficient.

A number of summary measures exist for influence of data points across all
coefficients, all involving both leverage and outlyingness.

A popular measure is Cook’s distance:

Di =
û′2i

k + 1︸ ︷︷ ︸
outlyingness

× hi
1− hi︸ ︷︷ ︸
leverage

where û′i is the standardized residual and hi is the hat value.

I It can be shown that Di is a weighted sum of k + 1 DFbetaS’s for
observation i

I In R, cooks.distance(model)
I D > 4/(n − k − 1) is commonly considered large

The influence plot: the studentized residuals plotted against the hat values,
size of points proportional to Cook’s distance.
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where û′i is the standardized residual and hi is the hat value.

I It can be shown that Di is a weighted sum of k + 1 DFbetaS’s for
observation i

I In R, cooks.distance(model)
I D > 4/(n − k − 1) is commonly considered large

The influence plot: the studentized residuals plotted against the hat values,
size of points proportional to Cook’s distance.
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Code for Influence Plot

ggplot(fl_lm, aes(x = .hat, y = rstudent(fl_lm),

size = .cooksd,

col = .cooksd > 4/(nrow(fl_data) - 1 - 1),

label = fl_data$county)) +

geom_point() + geom_text(vjust = 2) +

xlab("Hat Values") + ylab("Studentized Residuals") +

geom_vline(xintercept = 2 * (fl_lm$rank - 1 + 1)/nrow(fl_data)

, linetype = 2) +

geom_hline(yintercept = c(-4, 4), linetype = 2) +

scale_color_manual("High Influence",

values = c("TRUE" = ucla_gold,

"FALSE" = ucla_blue)) +

scale_size("Cook’s Distance") + theme_bw() +

theme(legend.position = c(0.9, 0.5)) + ylim(c(-7, 20)) +

xlim(c(0, 0.4)) + ggtitle("Influence Plot")
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A Quick Function for Standard Diagnostic Plots
R Code

> par(mfrow=c(2,2))

> plot(mod1)

−1000000 0 500000 1500000

0.
0e

+
00

1.
0e

+
07

Fitted values

R
es

id
ua

ls

●

● ●●●
●

●
●

●●

●

●● ●
●

●

●

● ●
●

● ● ●

●

●

●

●
●

●
● ●

●

●

●
●

●

●●
● ●

●●●●
●

●

●

●

●

●
● ●●●

● ●●

●
●●

●

●

●

●

●

● ●
●●●

●
●

●
●

●
●

●

● ●●
●

●

●

●●●

●

●

●
●

●

●● ●
●

●

●
●

● ●

●

●

●

●
●●

●
●

● ●

●

●●
●

●● ● ●
●

●

●

●

●

●●
● ●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●●
● ●

●

●

●

●

●
●

●
● ●

●

●
● ●●

●

● ●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●●

●

●●●
●

●

●

●

●

●

●
●

●●

●

●● ●●

●

●

●

●●

●
●

●

●●
● ●

●

●

●

Residuals vs Fitted

160 188

62

●

●● ● ●
●

●
●

● ●

●

●● ●
●

●

●

●●

●

● ●●

●

●

●

●
●

●
● ●

●

●

●
●

●

● ●
●●

● ● ●●
●

●

●

●

●

●
● ●●●

●●●

●
● ●

●

●

●

●

●

●●
●● ●

●
●

●
●

●
●

●

●● ●
●

●

●

●● ●

●

●

●
●

●

● ●●
●

●

●
●

●●

●

●

●

●
●●

●
●

●●

●

● ●
●

●●●●
●

●

●

●

●

●●
● ●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

● ●
●●

●

●

●

●

●
●

●
●

●

●

●
● ●●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●
●

● ●

●

●● ●
●

●

●

●

●

●

●
●

●
●

●

● ●● ●

●

●

●

●●

●
●

●

●●
● ●

●

●

●

−3 −2 −1 0 1 2 3

0
2

4
6

8

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

160188

62

−1000000 0 500000 1500000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

● ●
●

● ●

●

●

●
●

●

●● ●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●●
●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●●
● ●

●

● ●
●

●

●

●

●
●

●

●

●

● ●●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

● ●

●

●
●

●
●

●

●

●

●
●●

●

● ●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●●●●

●
●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

Scale−Location
160 188

62

0.00 0.05 0.10 0.15 0.20

0
2

4
6

8

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

● ●● ●
●

●
●

●●

●

●●●
●
●

●

●●
●

●●●

●

●

●

●
●
●
●●
●

●

●
●

●

●●
●●

● ●●●
●

●

●

●

●

●
● ●●●
●●●

●
●●

●

●

●

●

●

●●
●●●

●
●

●
●

●
●

●

●●●
●

●

●

●●●

●

●

●
●

●

●●●
●

●

●
●
● ●

●

●

●

●
●●

●
●
●●

●

●●
●

●●●●
●

●

●

●

●

●●
●●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●●
●●

●

●

●

●

●
●

●
● ●

●

●
●●●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●
●

●●

●

●●●
●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

●

●●

●
●

●

●●
●●

●

●

●

Cook's distance

0.5

1

Residuals vs Leverage

188160

205

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 66 / 127



The Improved Model
R Code

> par(mfrow=c(2,2))

> plot(mod2)
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‘Fun With Outliers’ ! (via FiveThirtyEight)
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We Covered

Outliers, Leverage and Influence Points

Always check your data!

Don’t let regression be a magic black box for you- understand what is
in your data that is leading to the findings.

Next Time: Robust Regression
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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This Week
I diagnosing problems and troubleshooting the linear model
I unusual and influential data → robust estimation
I non-linearity → generalized additive models
I unusual errors → sandwich SEs

Next Week
I frameworks for causal inference

Long Run
I probability → inference → regression → causal inference
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1 Thinking About Problems

2 Non-Normality

3 Extreme Values
Outliers
Leverage Points
Influence Points

4 Robust Regression Methods
Appendix: Robustness

5 Nonlinearity
Linear Basis Function Models
Generalized Additive Models

6 Clustering
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Limitations of the Standard Tools
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What happens when there are two influence points?

Red line drops the red influence point

Blue line drops the blue influence point

Neither of the “leave-one-out” approaches helps recover the line
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The Idea of Robustness

We have and will cover a few ideas in robust statistics (much of
which is due directly or indirectly to Peter Huber).

Robust methods are procedures that are designed to continue to
provide ‘reasonable’ answers in the presence of violation of some
assumptions.

A lot of social scientists use robust standard errors but far fewer use
robust regression tools.

These methods used to be computationally prohibitive but haven’t
been for the last 10-15 years
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But What About Gauss-Markov and BLUE?

One argument here is that even without normality, we know that
Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

How comforting should this be? Not very.

The Linear point is an artificial restriction. It means the estimator has
to be of the form β̂ = Wy but why only use those?

With normality assumption we get Best Unbiased Estimator (BUE)
which is quite comforting when n� p (number of observations much
larger than number of variables).
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

”[Even without normally distributed errors] OLS co-
efficient estimators remain unbiased and efficient.”

- Berry (1993)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

”[The Gauss-Markov theorem] justifies the use of
the OLS method rather than using a variety of com-
peting estimators”

- Wooldridge (2013)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

”We need not look for another linear unbiased esti-
mator, for we will not find such an estimator whose
variance is smaller than the OLS estimator”

- Gujarati (2004)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

”The Gauss-Markov theorem allows us to have con-
siderable confidence in the least squares estima-
tors.”

- Berry and Feldman (1993)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

The Gauss-Markov theorem has convinced re-
searchers in political science that as long as . . . the
Gauss-Markov assumptions are met, the distribu-
tion of the errors is unimportant. But the distri-
bution of the errors is crucial to a linear regression
analysis. Deviations from normality, especially large
deviations commonly found in regression models in
political science, can devastate the performance of
least squares compared to alternative estimators

- Baissa and Rainey (2018)
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Robustly Estimating a Location

Let’s simplify- what if we want to estimate the center of a symmetric
distribution.

Two options (of many): mean and median

Characteristics to consider: efficiency when assumptions hold,
sensitivity to assumption violation.

For normal data yi ∼ N (µ, σ2), median is less efficient:

I V (µ̂mean) = σ2

n

I V (µ̂median) = πσ2

2n
I Median is π

2 times larger (i.e. less efficient)

We can measure sensitivity with the influence function which
measures change in estimator based on corruption in one datapoint.
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Influence Function
Imagine that we had a sample Y from a standard normal: -0.068,
-1.282, 0.013, 0.141, -0.980, 1.63. Ȳ = −1.52

Now imagine we add a contaminated 7th observation which could
range from -10 to +10. How would the estimator change for the
median and mean?
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Example from Fox
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Breakdown Point

The influence function showed us how one aberrant point can change
the resulting estimate.

We also want to characterize the breakdown point which is the
fraction of arbitrarily bad data that the estimator can tolerate without
being affected to an arbitrarily large extent

The breakdown point of the mean is 0 because (as we have seen) a
single bad data point can change things a lot.

The median has a breakdown point of 50% because half the data can
be bad without causing the median to become completely unstuck.
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M-estimators

We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation

M-estimators minimize a sum over an objective function
∑n

i ρ(E )
where E is Yi − µ̂

I The mean has
∑

i ρ(E ) =
∑

i (Yi − µ̂)2

I The median has
∑

i ρ(E ) =
∑

i |(Yi − µ̂)|
The shape of the influence function is determined by the derivative of
the objective function with respect to E .

Other objectives include the Huber objective and Tukey’s biweight
objective which have different properties.

Calculating robust M estimators often requires an iterative procedure
and a careful initialization.
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M-estimation for Regression

We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose ρ() so that observations with large residuals
get less weight.

Can be very robust to outliers in the Y space (less so in the X space
usually)

Some options:
I Least Median Squares: choose β̂ to minimize

median
{

(yi − x′i β̂LMS)2
}n

i=1
. Very high breakdown point, but very

inefficient.
I Least Trimmed Squares: choose β̂ to minimize the sum of the p

smallest elements of
{

(yi − x′i β̂LTS)2
}n

i=1
. High breakdown point and

more efficient, still not as efficient as some.
I MM-estimator: what I recommend in practice (more in appendix)

You can find an asymptotic covariance matrix for M-estimators but I
would bootstrap it if possible as the asymptotics kick in slowly.
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Can be very robust to outliers in the Y space (less so in the X space
usually)

Some options:
I Least Median Squares: choose β̂ to minimize

median
{

(yi − x′i β̂LMS)2
}n

i=1
. Very high breakdown point, but very

inefficient.
I Least Trimmed Squares: choose β̂ to minimize the sum of the p

smallest elements of
{

(yi − x′i β̂LTS)2
}n

i=1
. High breakdown point and

more efficient, still not as efficient as some.
I MM-estimator: what I recommend in practice (more in appendix)

You can find an asymptotic covariance matrix for M-estimators but I
would bootstrap it if possible as the asymptotics kick in slowly.
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library(MASS)

set.seed(588)

n <- 50

x <- rnorm(n)

y <- 10 - 2*x + rnorm(n)

x[1:5] <- rnorm(5, mean=5)

y[1:5] <- 10 + rnorm(5)

ols.out <- lm(y~x)

m.out <- rlm(y~x, method="M")

lms.out <- lqs(y~x, method="lms")

lts.out <- lqs(y~x, method="lts")

s.out <- lqs(y~x, method="S")

mm.out <- rlm(y~x, method="MM")
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Simulation Results

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 82 / 127



Thoughts on Robust Estimators

Robust estimators aren’t commonly seen in applied social science
work but perhaps they should be.

Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.

In most cases I personally would start with OLS, do diagnostics and
then consider a robust alternative. If I don’t have time for
diagnostics, maybe robust is better from the outset.

See Baissa and Rainey (2018) “When BLUE is Not Best: Non-Normal
Errors and the Linear Model” in Political Science Research &
Methods for more on this topic.

The Fox textbook Chapter 19 is also quite good on this and points
out to the key references

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 83 / 127



Thoughts on Robust Estimators

Robust estimators aren’t commonly seen in applied social science
work but perhaps they should be.

Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.

In most cases I personally would start with OLS, do diagnostics and
then consider a robust alternative. If I don’t have time for
diagnostics, maybe robust is better from the outset.

See Baissa and Rainey (2018) “When BLUE is Not Best: Non-Normal
Errors and the Linear Model” in Political Science Research &
Methods for more on this topic.

The Fox textbook Chapter 19 is also quite good on this and points
out to the key references

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 83 / 127



Thoughts on Robust Estimators

Robust estimators aren’t commonly seen in applied social science
work but perhaps they should be.

Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.

In most cases I personally would start with OLS, do diagnostics and
then consider a robust alternative. If I don’t have time for
diagnostics, maybe robust is better from the outset.

See Baissa and Rainey (2018) “When BLUE is Not Best: Non-Normal
Errors and the Linear Model” in Political Science Research &
Methods for more on this topic.

The Fox textbook Chapter 19 is also quite good on this and points
out to the key references

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 83 / 127



Thoughts on Robust Estimators

Robust estimators aren’t commonly seen in applied social science
work but perhaps they should be.

Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.

In most cases I personally would start with OLS, do diagnostics and
then consider a robust alternative. If I don’t have time for
diagnostics, maybe robust is better from the outset.

See Baissa and Rainey (2018) “When BLUE is Not Best: Non-Normal
Errors and the Linear Model” in Political Science Research &
Methods for more on this topic.

The Fox textbook Chapter 19 is also quite good on this and points
out to the key references

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 83 / 127



We Covered

Robust Regression

Appendix after these slides with some more formality on
M-estimators.

Next Time: Nonlinearity
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Appendix: Characterizing Estimator Robustness (formally)

Definition (Breakdown Point)

The breakdown point of an estimator is the smallest fraction of the data
that can be changed an arbitrary amount to produce an arbitrarily large
change in the estimate (Seber and Lee 2003, pg 82)

Definition (Influence Function)

Let Fp = (1− p)F + pδz0 where F is a probability measure, δz0 is the
point mass at z0 ∈ Rk , and p ∈ (0, 1).
Let T (·) be a statistical functional. The influence function of T is

IF (z0;T ,F ) = lim
p↓0

T (Fp)− T (F )

p

The influence function is a function of z0 given T and F . It describes how
T changes with small amounts of contamination at z0 (Hampel,
Rousseeuw, Ronchetti, and Stahel, (1986), p. 84).
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Appendix: S Estimators
To talk about MM−estimators we need a type of estimator called an
S-estimator.

S-estimators work somewhat differently in that the goal is to minimize the
scale estimate subject to a constraint.
An S-estimator for the regression model is defined as the values of β̂S and
s that minimize s subject to the constraint:

1

n

n∑
i=1

ρ

(
yi − x′i β̂S

s

)
≥ K

where K is user-defined constant (typically set to 0.5) and ρ : R→ [0, 1] is
a function with the following properties (Davies, 1990, p. 1653):

1 ρ(0) = 1
2 ρ(u) = ρ(−u), u ∈ R
3 ρ : R+ → [0, 1] is nonincreasing, continuous at 0, and continuous on

the left
4 for some c > 0, ρ(u) > 0 if |u| < c and ρ(u) = 0 if |u| > c
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Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds– very high
breakdown point and good efficiency.

The work by first calculating S-estimates of the scale and coefficients and
then using these as starting values for a particular M-estimator.

Good properties, but costly to compute (usually impossible to compute
exactly).
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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This Week
I diagnosing problems and troubleshooting the linear model
I unusual and influential data → robust estimation
I non-linearity → generalized additive models
I unusual errors → sandwich SEs

Next Week
I frameworks for causal inference

Long Run
I probability → inference → regression → causal inference
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1 Thinking About Problems

2 Non-Normality

3 Extreme Values
Outliers
Leverage Points
Influence Points

4 Robust Regression Methods
Appendix: Robustness

5 Nonlinearity
Linear Basis Function Models
Generalized Additive Models

6 Clustering
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Nonlinearity

We know that linear regression asymptotically gets us the best linear
approximation to the conditional expectation function.

We can always add transformations of variables (like polynomials) to
expand X in a way that makes non-linear shapes in the original
variable.

What happens when we don’t know the shape of the non-linearity?

In Week 5 we talked about nonparametric regressions for settings
with one independent variable.

Many forms of machine learning are best thought of as nonparametric
regressions in higher dimensions.

We can often see poor fits of the conditional expectation function in
the residuals, but let’s instead just do diagnosis by treatment and
look at some of these other approaches to modeling.
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Thanks XKCD for having a comic for everything!
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Bias-Variance Tradeoff
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Example Synthetic Problem

y = sin(1 + x2) + ε

This section adapted from slides by Radford Neal.
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Linear Basis Function Models

We talked before about polynomials x2, x3, x4 for modeling
non-linearities, this is a linear basis function model.

In general the idea is to do a linear regression of y on
φ1(x), φ2(x), . . . , φm−1(x) where φj are basis functions.

The model is now:

y = f (x , β) + ε

f (x , β) = β0 +
m−1∑
j=1

βjφj(x) = βTφ(x)
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Polynomial Basis Functions

We have already seen some basis functions. Here are OLS fits with
polynomial basis functions of increasing order.

It appears that the last model is too complex and is overfitting a bit.
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Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over
the whole input space. Often local basis functions are more appropriate.

One choice is a Gaussian basis function

φj(x) = exp(−(x − µj)2)/2s2)
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Gaussian Basis Fits
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Regularization

We’ve seen that flexible models can lead to overfitting

Two ways to address: limit model flexibility or use a flexible model
and regularize

Regularization is a way of expressing a preference for smoothness in
our function by adding a penalty term to our optimization function.

Here we will consider a penalty of the form λ
∑m−1

j=1 β2
j where λ

controls the strength of the penalty.

The penalty trades off some bias for an improvement in variance

The trick in general is how to set λ
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Results
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Conclusions from This Example

we can control overfitting by modifying the width of the basis
function s or with penalty

we will need some way in general to tune these

we will also need some way to handle multivariate functions.
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Generalized Additive Models (GAM)

Recall the linear model,

yi = β0 + x1iβ1 + x2iβ2 + x3iβ3 + ui

For GAMs, we maintain additivity, but instead of imposing termwise
linearity we allow flexible functional forms for each explanatory variable,
where s1(·), s2(·), and s3(·) are smooth functions that are estimated from
the data:

yi = β0 + s1(x1i ) + s2(x2i ) + s3(x3i ) + ui
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Generalized Additive Models (GAM)

yi = β0 + s1(x1i ) + s2(x2i ) + s3(x3i ) + ui

GAMS are semi-parametric, they strike a compromise between
nonparametric methods and parametric regression

sj(·) are usually estimated with locally weighted regression smoothers or
cubic smoothing splines (but many approaches are possible)

They do NOT give you a set of regression parameters β̂. Instead one obtains
a graphical summary of how E [Y |X,X2, ...,Xk ] varies with X1 (estimates of
sj(·) at every value of Xi,j)

Theory and estimation are somewhat involved, but they are easy to use:

I gam.out <- gam(y∼s(x1)+s(x2)+x3)
plot(gam.out)

I Multiple functions but I recommend mgcv package
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Generalized Additive Models (GAM)

The GAM approach can be extended to allow interactions (s12(·)) between
explanatory variables, but this eats up degrees of freedom so you need a
lot of data.

yi = β0 + s12(x1i , x2i ) + s3(x3i ) + ui

It can also be used for hybrid models where we model some variables as
parametrically and other with a flexible function:

yi = β0 + β1x1i + s2(x2i ) + s3(x3i ) + ui
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Attitudes Toward Immigration

ppeduc

2

4

6

8

ppage

20

40

60

80

response

2.5

3.0

3.5

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 107 / 127



GAM Fit to Attitudes Toward Immigration

ppeduc

2

4

6

8

ppage

20

40

60

80

response

2.0

2.5

3.0

3.5

4.0

red/green are +/− 2 s.e.

ppeduc

2

4

6

8

ppage

20

40

60

80

response

2.0

2.5

3.0

3.5

4.0

red/green are +/− 2 s.e.

ppeduc

2

4

6

8

ppage

20

40

60

80

response

2.0

2.5

3.0

3.5

4.0

red/green are +/− 2 s.e.

Stewart (Princeton) Week 8: Diagnostics and Solutions October 19–23, 2020 108 / 127



GAM Fit to Attitudes Toward Immigration
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Concluding Thoughts

Non-linearity is pretty easy to detect and can substantially change our
inferences

GAMs are a great way to model/detect non-linearity but
transformations are often simpler

However, be wary of the global properties of transformations and
polynomials

Non-linearity concerns are most relevant for continuous covariates
with a large range (age)

NB: it is okay if you didn’t follow all of this today! GAMs are tricky.
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We Covered

Linear basis function models.

Generalized Additive Models.

Next Time: Clustering
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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This Week
I diagnosing problems and troubleshooting the linear model
I unusual and influential data → robust estimation
I non-linearity → generalized additive models
I unusual errors → sandwich SEs

Next Week
I frameworks for causal inference

Long Run
I probability → inference → regression → causal inference
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1 Thinking About Problems

2 Non-Normality

3 Extreme Values
Outliers
Leverage Points
Influence Points

4 Robust Regression Methods
Appendix: Robustness

5 Nonlinearity
Linear Basis Function Models
Generalized Additive Models

6 Clustering
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Clustered Dependence: Intuition

Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

Their design: randomly sample households and randomly assign them
to different treatment conditions

But the measurement of turnout is at the individual level

Violation of iid/random sampling:

I errors of individuals within the same household are correlated
I  violation of homoskedasticity

Called clustering or clustered dependence
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Clustered Dependence: notation

Clusters: j = 1, . . . ,m

Units: i = 1, . . . , nj

nj is the number of units in cluster j

n =
∑

j nj is the total number of units

Units (usually) belong to a single cluster:

I voters in households
I individuals in states
I students in classes
I rulings in judges

Especially important when outcome varies at the unit-level, yij and
the main independent variable varies at the cluster level, xj .

Ignoring clustering is “cheating”: units not independent
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Clustered Dependence: Example Model

yij = β0 + β1xij + εij

= β0 + β1xij + vj + uij

vj
iid∼ N(0, ρσ2) cluster error component

uij
iid∼ N(0, (1− ρ)σ2) unit error component

vj and uij are assumed to be independent of each other

ρ ∈ (0, 1) is called the within-cluster correlation.

What if we ignore this structure and just use εij as the error?

Variance of the composite error is σ2:

Var[εij ] = Var[vj + uij ]

= Var[vj ] + Var[uij ]

= ρσ2 + (1− ρ)σ2 = σ2
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Lack of Independence

Covariance between two units i and s in the same cluster is ρσ2:

Cov[εij , εsj ] = ρσ2

Correlation between units in the same group is just ρ:

Cor[εij , εsj ] = ρ

Zero covariance of two units i and s in different clusters j and k :

Cov[εij , εsk ] = 0
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Example Covariance Matrix

ε =
[
ε1,1 ε2,1 ε3,1 ε4,2 ε5,2 ε6,2

]′

Var[ε] = Σ =



σ2 σ2 · ρ σ2 · ρ 0 0 0
σ2 · ρ σ2 σ2 · ρ 0 0 0
σ2 · ρ σ2 · ρ σ2 0 0 0

0 0 0 σ2 σ2 · ρ σ2 · ρ
0 0 0 σ2 · ρ σ2 σ2 · ρ
0 0 0 σ2 · ρ σ2 · ρ σ2


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Appendix: Example 6 Units, 2 Clusters
ε =

[
ε1,1 ε2,1 ε3,1 ε4,2 ε5,2 ε6,2

]′

V [ε] = Σ =


V [ε1,1] Cov [ε2,1, ε1,1] Cov [ε3,1, ε1,1] . . .

Cov [ε1,1, ε2,1] V [ε2,1] Cov [ε3,1, ε2,1] . . .
Cov [ε1,1, ε3,1] Cov [ε2,1, ε3,1] V [ε3,1] . . .
Cov [ε1,1, ε4,2] Cov [ε2,1, ε4,2] Cov [ε3,1, ε4,2] V [ε4,2] . .
Cov [ε1,1, ε5,2] Cov [ε2,1, ε5,2] Cov [ε3,1, ε5,2] Cov [ε4,2, ε5,2] V [ε5,2] .
Cov [ε1,1, ε6,2] Cov [ε2,1, ε6,2] Cov [ε3,1, ε6,2] Cov [ε4,2, ε6,2] Cov [ε5,2, ε6,2] V [ε6,2]



=



σ2 σ2 · ρ σ2 · ρ 0 0 0

σ2 · ρ σ2 σ2 · ρ 0 0 0

σ2 · ρ σ2 · ρ σ2 0 0 0

0 0 0 σ2 σ2 · ρ σ2 · ρ
0 0 0 σ2 · ρ σ2 σ2 · ρ
0 0 0 σ2 · ρ σ2 · ρ σ2



which can be verified as follows:

V [εij ] = V [vj + uij ] = V [vj ] + V [uij ] = ρσ2 + (1− ρ)σ2 = σ2

Cov [εij , εlj ] = E [εijεlj ]− E [εij ]E [εlj ] = E [εijεlj ] = E [(vj + uij )(vj + ulj )]

= E [vj
2] + E [vjuij ] + E [vjulj ] + E [uijulj ]

= E [vj
2] + E [vj ]E [uij ] + E [vj ]E [ulj ] + E [uij ]E [ulj ]

= E [vj
2] = V [vj ] + (E [vj ])

2 = V [vj ] = ρσ2

Cov [εij , εlk ] = E [εijεlk ]− E [εij ]E [εlk ] = E [εijεlk ] = E [(vj + uij )(vk + ulk )]
= E [vj vk ] + E [vjulk ] + E [vkuij ] + E [uijulk ]
= E [vj ]E [vk ] + E [vj ]E [ulk ] + E [vk ]E [uij ] + E [uij ]E [ulk ] = 0
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Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, Σ, is block diagonal:

By independence, the errors are uncorrelated across clusters:

V [ε] = Σ =


Σ1 0 . . . 0
0 Σ2 . . . 0

. . .

0 0 . . . ΣM



But the errors may be correlated for units within the same cluster:

Σj =


σ2 σ2 · ρ . . . σ2 · ρ
σ2 · ρ σ2 . . . σ2 · ρ

. . .

σ2 · ρ σ2 · ρ . . . σ2


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Correcting for Clustering

1 Including a dummy variable for each cluster
(fixed effects)

2 “Random effects” models
(take above model as true and estimate ρ and σ2)

3 Cluster-robust (“clustered”) standard errors

4 Aggregate data to the cluster-level and use OLS y j = 1
nj

∑
i yij

I If nj varies by cluster, then cluster-level errors will have
heteroskedasticity
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Cluster-Robust SEs
First, let’s write the within-cluster regressions like so:

yj = Xjβ + εj

yj is the vector of responses for cluster j , and so on

We assume that respondents are independent across clusters, but
possibly dependent within clusters. Thus, we have

Var[εj |Xj ] = Σj

Remember our sandwich expression:

Var[β̂|X] =
(
X′X

)−1
X′ΣX

(
X′X

)−1

Under this clustered dependence, we can write this as:

Var[β̂|X] =
(
X′X

)−1

 m∑
j=1

X′jΣjXj

(X′X)−1
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Estimating the Variance Components: ρ and σ2

The overall error variance σ2 is easily estimated using our usual estimator based
on the regression residuals: σ̂2 = ε̂′ε̂

N−k−1

The within-cluster correlation can be estimated as follows:

1 Subtract from each residual ε̂ij the mean residual within its cluster. Call this
vector of demeaned residuals ε̃, which estimates the unit error component u

2 Compute the variance of the demeaned residuals as: ̂̃σ2
= ε̃′ε̃

N−M−k−1 , which

estimates (1− ρ)σ2

3 The within cluster correlation is then estimated as: ρ̂ = σ̂2−̂̃σ2

σ̂2
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Estimating Cluster Robust Standard Errors
We can now compute the CRSEs using our sandwich formula:

1 Take your estimates of σ̂2 and ρ̂ and construct the block diagonal
variance-covariance matrix Σ̂:

Σ̂ =


Σ̂1 0 . . . 0

0 Σ̂2 . . . 0
. . .

0 0 . . . Σ̂M

 with Σ̂j =


σ̂2 σ̂2 · ρ̂ . . . σ̂2 · ρ̂
σ̂2 · ρ̂ σ̂2 . . . σ̂2 · ρ̂

. . .

σ̂2 · ρ̂ σ̂2 · ρ̂ . . . σ̂2


2 Plug Σ̂ into the sandwich estimator to obtain the cluster “corrected”

estimator of the variance-covariance matrix

V [β̂|X] = (X′X)
−1

X′Σ̂X (X′X)
−1

There are multiple implementations in R including
multiwayvcov:cluster.vcov and sandwich::vcovCL
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Cluster-Robust Standard Errors

CRSE do not change our estimates β̂, cannot fix bias

CRSE is consistent estimator of Var[β̂] given clustered dependence

I Relies on independence between clusters, dependence within clusters
I Doesn’t depend on the model we present
I CRSEs usually > conventional SEs—use when you suspect clustering

Consistency of the CRSE are in the number of groups, not the
number of individuals

I CRSEs can be incorrect with a small (< 50 maybe) number of clusters
(often biased downward)

I Block bootstrap can be a useful alternative (key idea: bootstrap by
resampling the clusters)

There are numerous alternative clustered standard error variants out
there.
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Concluding Thoughts on Diagnostics

Residuals are important. Look at them.
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This Week in Review

We talked about troubleshooting the linear model—few black and
white answers but many tools for the toolkit.

I completely understand than many people won’t have all the details
of robust regression, generalized additive models or clustered standard
errors.

It is useful to know

(a) these tools exist.
(b) roughly what problem they help solve.
(c) approximately why they work.

The problem set will give you a chance to practice many of these
things.

There are plenty of other techniques out there (particularly for
modeling non-linearity).

Next week: Frameworks for Causal Inference!
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