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Where We’ve Been and Where We’re Going...

Last Week
I frameworks for causal inference

This Week
I experimental ideal
I identification with measured confounding
I estimation via stratification, matching and regression

Next Week
I approaches with unmeasured confounding

Long Run
I causal frameworks → inference → regression → causal inference
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Lancet 2001: negative correlation between coronary heart disease mortality
and level of vitamin C in bloodstream (controlling for age, gender, blood
pressure, diabetes, and smoking)
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Lancet 2002: no effect of vitamin C on mortality in controlled placebo trial
(controlling for nothing)
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Lancet 2003: comparing among individuals with the same age, gender,
blood pressure, diabetes, and smoking, those with higher vitamin C levels
have lower levels of obesity, lower levels of alcohol consumption, are less
likely to grow up in working class, etc.
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Why So Much Variation?

Confounders

X

T Y
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Observational Studies and Experimental Ideal

Randomization forms gold standard for causal inference, because it
balances observed and unobserved confounders

Cannot always randomize so we do observational studies, where we
adjust for the observed covariates and hope that unobservables are
balanced

Better than hoping: design observational study to approximate an
experiment

I “The planner of an observational study should always ask himself [sic]:
How would the study be conducted if it were possible to do it by
controlled experimentation” (Cochran 1965)
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Experiment review

An experiment is a study where assignment to treatment is controlled
by the researcher.

I P(Ti = 1) is controlled and known by researcher.

In the ideal randomized experiment, two assumptions hold by design:

1 Positivity: assignment is probabilistic: 0 < P(Ti = 1) < 1

F No deterministic assignment.

2 Ignorability: P (Ti = 1|Y(1),Y(0)) = P(Ti = 1)

F Treatment assignment does not depend on any potential outcomes.
F Sometimes written as Ti⊥⊥(Y(1),Y(0))
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Why do Experiments Help?

Remember selection bias?

E [Yi |Ti = 1]− E [Yi |Ti = 0]

= E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 0]

= E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 1] + E [Yi (0)|Ti = 1]− E [Yi (0)|Ti = 0]

= E [Yi (1)− Yi (0)|Ti = 1]︸ ︷︷ ︸
Average Treatment Effect on Treated

+E [Yi (0)|Ti = 1]− E [Yi (0)|Ti = 0]︸ ︷︷ ︸
selection bias

In an experiment we know that treatment is randomly assigned. Thus we can do
the following:

E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 0] = E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 1]

= E [Yi (1)]− E [Yi (0)]

When all goes well, an experiment eliminates selection bias.
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Randomization Removes the Arrows into the Treatment

X

T Y

This ensures any observed or unobserved pretreatment covariates have the
same distribution in the treatment and the control group. That is, they
are balanced.
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Stratified Designs

Stratified randomized experiment seek to remove bad randomizations
where covariates are unbalanced by chance.

Core Procedure:
I form J blocks, bj , j = 1, . . . , J based on the covariates
I completely randomized assignment within each block.
I randomization probability depends on the block variable, Bi

I conditional ignorability: Ti⊥⊥(Yi (1),Yi (0))|Bi .

Generally, stratified designs mean that the probability of treatment
depends on a covariate, Xi : P(Ti = 1|Xi = x).

Conditional randomization assumptions:
I Positivity: 0 < P(Ti = 1|Xi = x) < 1 for all i and x .
I Unconfoundedness: P(Ti = 1|X,Y(1),Y(0)) = P(Ti = 1|Xi )
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Identification for Stratified Random Experiments

Can we identify the ATE under these stratified designs? Yes!

E [Yi (1)− Yi (0)] = EX

{
E [Yi (1)− Yi (0)|Xi ]

}
(iterated expectations)

= EX

{
E [Yi (1)|Xi ]− E [Yi (0)|Xi ]

}
= EX

{
E [Yi (1)|Ti = 1,Xi ]− E [Yi (0)|Ti = 0,Xi ]

}
(ignorability)

= EX

{
E [Yi |Ti = 1,Xi ]− E [Yi |Ti = 0,Xi ]

}
(SUTVA)

ATE is just the weighted average of the within-strata differences in
means.

Identified because the last line is a function of observables.

The averaging is over the distribution of the strata  size of the
blocks.
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Experiments

The benefit of experiments is that key decisions hold by design and
that you have balance along observed AND unobserved covariates.

We aren’t really covering experiments in this class as a broader
discussion would require discussion of topics like randomization
schemes, blocking, power calculations, internal/external validity,
pre-registration and ethics.

We cover a bit because experiments are a dominant metaphor. Much
of the work on observational studies is trying to find a circumstance
where we can pretend we have a stratified experiment.

Of course, in real experiments sometimes people don’t always do
what we say (compliance problems).
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schemes, blocking, power calculations, internal/external validity,
pre-registration and ethics.

We cover a bit because experiments are a dominant metaphor. Much
of the work on observational studies is trying to find a circumstance
where we can pretend we have a stratified experiment.

Of course, in real experiments sometimes people don’t always do
what we say (compliance problems).
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We Covered

Experiments

Stratified designs

Identification of same

Plan for the rest of the week:

Identification using the stratified random experiment analogy.

Three approaches for estimation: stratification, matching and
regression.

A deeper look at the implications of a few different estimands.

Next Time: Identification with Measured Confounding!
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Where We’ve Been and Where We’re Going...

Last Week
I frameworks for causal inference

This Week
I experimental ideal
I identification with measured confounding
I estimation via stratification, matching and regression

Next Week
I approaches with unmeasured confounding

Long Run
I causal frameworks → inference → regression → causal inference
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Designing Observational Studies

Rubin (2008) argues that we should still “design” our observational
studies:

I Pick the ideal experiment to this observational study.
I Hide the outcome data (minimize snooping!).
I Try to estimate the randomization procedure.
I Analyze this as a stratified randomized experiment with this estimated

procedure.

This is the perspective on observational design that comes out of the
potential outcomes framework.

Core task from this perspective is to reverse engineer the treatment
assignment mechanism to find the experiment.
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Identification Under Selection on Observables

Identification Assumption
1 (Y (1),Y (0))⊥⊥T |X (selection on observables)

2 0 < P(T = 1|X ) < 1 with probability one (common support)

Identification Result
Given selection on observables we have

E [Y (1)− Y (0)|X ] = E [Y (1)− Y (0)|X ,T = 1]

= E [Y |X ,T = 1]− E [Y |X ,T = 0]

Therefore, under the positivity assumption:

τATE = E [Y (1)− Y (0)] =

∫
E [Y (1)− Y (0)|X ] dP(X )

=

∫ (
E [Y |X ,T = 1]− E [Y |X ,T = 0]

)
dP(X )
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Identification Assumption
1 (Y (1),Y (0))⊥⊥T |X (selection on observables)

2 0 < P(T = 1|X ) < 1 with probability one (common support)

Identification Result

Similarly, for the Average Treatment Effect on the Treated (ATT),

τATT = E [Y (1)− Y (0)|T = 1]

=

∫ (
E [Y |X ,T = 1]− E [Y |X ,T = 0]

)
dP(X |T = 1)

To identify τATT the selection on observables and common support conditions can
be relaxed to:

Y (0)⊥⊥T |X (Selection on Observables for Controls)

P(T = 1|X ) < 1 (Weak Positivity)
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Yi (1) Yi (0) Ti Xi

1
E [Y (1)|X = 0,T = 1] E [Y (0)|X = 0,T = 1]

1 0
2 1 0
3

E [Y (1)|X = 0,T = 0] E [Y (0)|X = 0,T = 0]
0 0

4 0 0
5

E [Y (1)|X = 1,T = 1] E [Y (0)|X = 1,T = 1]
1 1

6 1 1
7

E [Y (1)|X = 1,T = 0] E [Y (0)|X = 1,T = 0]
0 1

8 0 1
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Potential Outcome Potential Outcome
unit under Treatment under Control

i Yi (1) Yi (0) Ti Xi

1
E [Y (1)|X = 0,T = 1]

E [Y (0)|X = 0,T = 1]= 1 0
2 E [Y (0)|X = 0,T = 0] 1 0
3

E [Y (1)|X = 0,T = 0] E [Y (0)|X = 0,T = 0]
0 0

4 0 0
5

E [Y (1)|X = 1,T = 1]
E [Y (0)|X = 1,T = 1]= 1 1

6 E [Y (0)|X = 1,T = 0] 1 1
7

E [Y (1)|X = 1,T = 0] E [Y (0)|X = 1,T = 0]
0 1

8 0 1

(Y (1),Y (0))⊥⊥T |X implies that we conditioned on all confounders. The
treatment is randomly assigned within each stratum of X :

E [Y (0)|X = 0,T = 1] = E [Y (0)|X = 0,T = 0] and

E [Y (0)|X = 1,T = 1] = E [Y (0)|X = 1,T = 0]
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i Yi (1) Yi (0) Ti Xi

1
E [Y (1)|X = 0,T = 1]

E [Y (0)|X = 0,T = 1]= 1 0
2 E [Y (0)|X = 0,T = 0] 1 0
3 E [Y (1)|X = 0,T = 0] =

E [Y (0)|X = 0,T = 0]
0 0

4 E [Y (1)|X = 0,T = 1] 0 0
5

E [Y (1)|X = 1,T = 1]
E [Y (0)|X = 1,T = 1]= 1 1

6 E [Y (0)|X = 1,T = 0] 1 1
7 E [Y (1)|X = 1,T = 0] =

E [Y (0)|X = 1,T = 0]
0 1

8 E [Y (1)|X = 1,T = 1] 0 1

(Y (1),Y (0))⊥⊥T |X also implies

E [Y (1)|X = 0,T = 1] = E [Y (1)|X = 0,T = 0] and

E [Y (1)|X = 1,T = 1] = E [Y (1)|X = 1,T = 0]
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Big problem

How can we determine if no unmeasured confounding holds if we
didn’t assign the treatment?

Put differently:

I What covariates do we need to condition on?
I What covariates do we need to include in our regressions?

One way, from the assumption itself:

I P[Ti = 1|X,Y(1),Y(0)] = P[Ti = 1|X]
I Include covariates such that, conditional on them, the treatment

assignment does not depend on the potential outcomes.

Another way: use DAGs and look at back-door paths.
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Backdoor paths and blocking paths

Backdoor path: is a non-causal path from T to Y .

I Would remain if we removed any arrows pointing out of T .

Backdoor paths between T and Y  common causes of T and Y :

T

X

Y

Here there is a backdoor path T ← X → Y , where X is a common
cause for the treatment and the outcome.
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Other types of confounding

T

U X

Y

T is enrolling in a job training program.

Y is getting a job.

U is being motivated

X is number of job applications sent out.

Big assumption here: no arrow from U to Y .
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Other types of confounding

T

U X

Y

T is exercise.

Y is having a disease.

U is lifestyle.

X is smoking

Big assumption here: no arrow from U to Y .
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What’s the problem with backdoor paths?

T

U X

Y

A path is blocked if:

1 we control for or stratify a non-collider on that path OR
2 we do not control for a collider.

Unblocked backdoor paths  confounding.

In the DAG here, if we condition on X , then the backdoor path is
blocked.
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T

U X

Y

A path is blocked if:
1 we control for or stratify a non-collider on that path OR
2 we do not control for a collider.

Unblocked backdoor paths  confounding.

In the DAG here, if we condition on X , then the backdoor path is
blocked.
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Not all backdoor paths

T

U1

X

Y

Conditioning on the posttreatment covariates opens the non-causal
path.

I  selection bias.
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Don’t condition on post-treatment variables

Every time you do, a puppy cries.
(just kidding. but seriously, this is one of the easiest ways to mess up your
analysis if you don’t know what you are doing.)
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M-bias

T

U1 U2

X

Y

Not all backdoor paths induce confounding.

This backdoor path is blocked by the collider X that we don’t control
for.

If we control for X  opens the path and induces confounding.

I Sometimes called M-bias.

Controversial because of differing views on what to control for:

I Rubin thinks that M-bias is a “mathematical curiosity” and we should
control for all pretreatment variables

I Pearl and others think M-bias is a real threat.
I See the Elwert and Winship piece for more!
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This backdoor path is blocked by the collider X that we don’t control
for.

If we control for X  opens the path and induces confounding.
I Sometimes called M-bias.
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I Rubin thinks that M-bias is a “mathematical curiosity” and we should
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Backdoor criterion

Can we use a DAG to argue for no unmeasured confounders?

Pearl answered yes, with the backdoor criterion, which states that the
effect of T on Y is identified if:

1 No backdoor paths from T to Y OR
2 Measured covariates are sufficient to block all backdoor paths from T

to Y .

First is really only valid for randomized experiments.

The backdoor criterion is fairly powerful. Tells us:

I if there is confounding given this DAG,
I if it is possible to remove the confounding, and
I what variables to condition on to eliminate the confounding.
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Example: Sufficient Conditioning Sets

We want to estimate the effect of X on Y for this DAG.

●

U1
●

U3

● Z1 ●Z2 ●Z3

●

X
●

Z5
●

Y

●

U9

●

U11

●

Z4

●

U2

●

U5

●

U4

●

U6

●U7

●

U10

●

U8

●● ●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

Remove arrows out of X .
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Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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No unblocked backdoor paths if we condition on Z1 and Z2
Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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No unblocked backdoor paths if we condition on Z1, Z2, and Z3
Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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No unblocked backdoor paths if we condition on Z2 and Z3
Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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Example: Non-sufficient Conditioning Sets

●
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There are unblocked paths if we condition on Z1, Z2, Z3, Z4
Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 33 / 145



More examples in Morgan and Winship
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Implications (via Vanderweele and Shpitser 2011)

1 Choose all pre-treatment covariates

(would condition on C2 inducing M-bias)

2 Choose all covariates which directly cause the treatment and the outcome

(would leave open a backdoor path A← C3 ← U3 → Y .)
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No unmeasured confounders is not testable

No unmeasured confounding places no restrictions on the observed
data. (

Yi (0)
∣∣Ti = 1,Xi

)︸ ︷︷ ︸
unobserved

d
=
(
Yi (0)

∣∣Ti = 0,Xi

)︸ ︷︷ ︸
observed

Recall,
d
= means equal in distribution.

No way to directly test this assumption without the counterfactual
data, which is missing by definition!

With backdoor criterion, you must have the correct DAG.
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Assessing no unmeasured confounders

Can do “placebo” tests, where Ti cannot have an effect (lagged
outcomes, etc)

Della Vigna and Kaplan (2007, QJE): effect of Fox News availability
on Republican vote share

I Availability in 2000/2003 can’t affect past vote shares.

Unconfoundedness could still be violated even if you pass this test!
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So Where Does That Leave Us?

If we can identify the right covariates X to get conditional ignorability
we can do selection on observables.

No unmeasured confounders ≈ randomized experiment.

These variables are those that block backdoor paths and we want to
be really sure we know what we are doing if we condition on a
post-treatment variable.

This still leaves us with a tricky estimation problem as we now need
to work with distributions conditional on X.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 38 / 145



So Where Does That Leave Us?

If we can identify the right covariates X to get conditional ignorability
we can do selection on observables.

No unmeasured confounders ≈ randomized experiment.

These variables are those that block backdoor paths and we want to
be really sure we know what we are doing if we condition on a
post-treatment variable.

This still leaves us with a tricky estimation problem as we now need
to work with distributions conditional on X.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 38 / 145



So Where Does That Leave Us?

If we can identify the right covariates X to get conditional ignorability
we can do selection on observables.

No unmeasured confounders ≈ randomized experiment.

These variables are those that block backdoor paths and we want to
be really sure we know what we are doing if we condition on a
post-treatment variable.

This still leaves us with a tricky estimation problem as we now need
to work with distributions conditional on X.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 38 / 145



So Where Does That Leave Us?

If we can identify the right covariates X to get conditional ignorability
we can do selection on observables.

No unmeasured confounders ≈ randomized experiment.

These variables are those that block backdoor paths and we want to
be really sure we know what we are doing if we condition on a
post-treatment variable.

This still leaves us with a tricky estimation problem as we now need
to work with distributions conditional on X.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 38 / 145



So Where Does That Leave Us?

If we can identify the right covariates X to get conditional ignorability
we can do selection on observables.

No unmeasured confounders ≈ randomized experiment.

These variables are those that block backdoor paths and we want to
be really sure we know what we are doing if we condition on a
post-treatment variable.

This still leaves us with a tricky estimation problem as we now need
to work with distributions conditional on X.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 38 / 145



We Covered

Identification under selection on observables.

DAGs return to help us choose what to condition on.

Next Time: Stratification!
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Where We’ve Been and Where We’re Going...

Last Week
I frameworks for causal inference

This Week
I experimental ideal
I identification with measured confounding
I estimation via stratification, matching and regression

Next Week
I approaches with unmeasured confounding

Long Run
I causal frameworks → inference → regression → causal inference
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Discrete covariates

Suppose that we knew that Ti was unconfounded within levels of a
binary Xi .

Then we could always estimate the causal effect using iterated
expectations as in a stratified randomized experiment:

EX

{
E [Yi |Ti = 1,Xi ]− E [Yi |Ti = 0,Xi ]

}
=
(
E [Yi |Ti = 1,Xi = 1]− E [Yi |Ti = 0,Xi = 1]

)
︸ ︷︷ ︸

diff-in-means for Xi=1

P[Xi = 1]︸ ︷︷ ︸
share of Xi=1

+
(
E [Yi |Ti = 1,Xi = 0]− E [Yi |Ti = 0,Xi = 0]

)
︸ ︷︷ ︸

diff-in-means for Xi=0

P[Xi = 0]︸ ︷︷ ︸
share of Xi=0

Stratification is great because it makes no assumptions about
parametric form.
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Stratification Example: Smoking and Mortality (Cochran,
1968)

Table 1

Death Rates per 1,000 Person-Years

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5
Cigars/pipes 35.5 20.7 17.4
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Stratification Example: Smoking and Mortality (Cochran,
1968)

Table 2

Mean Ages, Years

Smoking group Canada U.K. U.S.

Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7
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Stratification

To control for differences in age, we would like to compare different
smoking-habit groups with the same age distribution

One possibility is to use stratification:

for each country, divide each group into different age subgroups

calculate death rates within age subgroups

average within age subgroup death rates using fixed weights (e.g.
number of cigarette smokers)
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Stratification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers?

15 · (11/40) + 35 · (13/40) + 50 · (16/40) = 35.5
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Smoking and Mortality (Cochran, 1968)

Table 3

Adjusted Death Rates using 3 Age groups

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 28.3 12.8 17.7
Cigars/pipes 21.2 12.0 14.2
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Continuous Covariates

So, great, we can stratify. Why not do this all the time?

What if Xi = income for unit i?
I Each unit has its own value of Xi : $54,134, $123,043, $23,842.
I If Xi = 54134 is unique, will only observe 1 of these:

E [Yi |Ti = 1,Xi = 54134]− E [Yi |Ti = 0,Xi = 54134]

I  cannot stratify to each unique value of Xi :

Practically, this is massively important: almost always have data with
unique values.

One option is to discretize (as we did with age) but that doesn’t work
if there are patterns within the bins.

Note that this is the problem of approximating conditional
expectations and that’s the machinery we’ve been building all
semester!
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We Covered

Stratification!

Next Time: Matching

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 50 / 145



We Covered

Stratification!

Next Time: Matching

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 50 / 145



Where We’ve Been and Where We’re Going...

Last Week
I frameworks for causal inference

This Week
I experimental ideal
I identification with measured confounding
I estimation via stratification, matching and regression

Next Week
I approaches with unmeasured confounding

Long Run
I causal frameworks → inference → regression → causal inference
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Tatem et al.’s predictions of sprint times with alternate models. Men’s times are in blue,
women’s times are in red.
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Model Dependence

Model Free Inference

To estimate E (Y |X = x) at x , average many observed Y with value x

Assumptions (Model-Based Inference)

1 Definition: model dependence at x is the difference between predicted
outcomes for any two models that fit about equally well.

2 The functional form follows strong continuity (think smoothness,
although it is less restrictive)

Result

The maximum degree of model dependence: solely a function of the
distance from the counterfactual to the data
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What Inferences Would You Be Willing to Make?

A Factual Question: How much salary would someone receive with 12
years of education (a high school degree)?

The model-free estimate: mean(Y ) among those with X = 12.

The model-based estimate: Ŷ = X β̂ = 12× $1, 000 = $12, 000
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Counterfactual Inferences with Interpolation

How much salary would someone receive with 14 years of education
(an Associates Degree)?

Model free estimate: impossible

Model-based estimate: Ŷ = X β̂ = 14× $1, 000 = $14, 000
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Counterfactual Inference with Extrapolation

How much salary would someone receive with 24 years of education
(a Ph.D.)?

Ŷ = X β̂ = 24× $1, 000 = $24, 000
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Another Counterfactual Inference with Extrapolation

How much salary would someone receive with 53 years of education?

Ŷ = X β̂ = 53× $1, 000 = $53, 000

What’s changed? How would we recognize it when the example is less
extreme or multidimensional?
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Model Dependence with One Explanatory Variable

Suppose Y is starting salary; X is education in 10 categories.

To estimate E (Y |X ): we need 10 parameters, E (Y |X = xj),
j = 1, . . . , 10.

Model-free method: average observations on Y for each value of X

Model-based method: regress Y on X , summarizing 10 parameters
with 2 (intercept and slope).

The difference between the 10 we need and the 2 we estimate with
regression is pure assumption.

(If X were continuous, we would be reducing ∞ to 2, also by
assumption)
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Model Dependence with Two Explanatory Variables

How many parameters do we now need to estimate?

20? Nope. Its
10× 10 = 100. This is the curse of dimensionality: the number of
parameters goes up geometrically, not additively.

If we run a regression, we are summarizing 100 parameters with 3 (an
intercept and two slopes).

But what about including an interaction? Right, so now we’re
summarizing 100 parameters with 4.

The difference: an enormous assumption based on convenience, not
evidence or theory.
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Model Dependence with Many Explanatory Variables

Suppose: 15 explanatory variables, with 10 categories each.

I need to estimate 1015 (a quadrillion) parameters with how many
observations?

I Regression reduces this to 16 parameters; quite an assumption!

Suppose: 80 explanatory variables.

I 1080 is more than the number of atoms in the universe.
I Yet, with a few simple assumptions, we can still run a regression and

estimate only 81 parameters.

The curse of dimensionality introduces huge assumptions, often
unrecognized.
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Overview of Matching

Goal: reduce model dependence in our matching approach

Makes parametric models work better rather than substitute for them
(i.e,. matching is not an estimator; its a preprocessing method).

It also prunes away data where we don’t have common support (both
treatment and control at same level of x),

Apply model to preprocessed (pruned) rather than raw data

Overall idea:

I If each treated unit exactly matches a control unit w.r.t. X , then:

(1)
treated and control groups are identical, (2) X is no longer a
confounder, (3) no need to worry about the functional form (ȲT − ȲC

is good enough).
I If treated and control groups are better balanced than when you

started, due to pruning, model dependence is reduced
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Matching as Preprocessing

Yi dep var, Ti (1=treated, 0=control), Xi confounders

Treatment Effect for treated observation i :

TEi = Yi − Yi (0)

= observed− unobserved

Estimate Yi (0) with Yj from matched (Xi ≈ Xj) control

Prune nonmatches: reduces imbalance & model dependence

Follow preprocessing with whatever statistical method you’d have
used without matching

(Warning: Pruning nonmatches can change your feasible estimand.)
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How Matching Helps with Model Dependence

What to do?

Preprocess I: Eliminate extrapolation region

Preprocess II: Match (prune) within interpolation region

Model remaining imbalance (as you would w/o matching)
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Empirical Illustration: Carpenter, AJPS, 2002

Hypothesis: Democratic senate majorities slow FDA drug approval
time

n = 408 new drugs (262 approved, 146 pending).

lognormal survival model.

seven oversight variables (median adjusted ADA scores for House and
Senate Committees as well as for House and Senate floors,
Democratic Majority in House and Senate, and Democratic
Presidency).

18 control variables (clinical factors, firm characteristics, media
variables, etc.)
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Evaluating Reduction in Model Dependence

Focus on the causal effect of a Democratic majority in the Senate
(identified by Carpenter as not robust).

Match: prune 49 units (2 treated, 17 control units).

run 262,143 possible specifications and calculates ATE for each.

Look at variability in ATE estimate across specifications.

(Normal applications would only use one or a few specifications.)
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Reducing Model Dependence

−80 −70 −60 −50 −40 −30

0.
00

0.
05

0.
10

0.
15

0.
20

Estimated in−sample average treatment effect for the treated

D
en

si
ty

Raw data Matched
data

Point estimate of 
 Carpenter's specification 

 using raw data

Figure: SATT Histogram: Effect of Democratic Senate majority on FDA drug
approval time, across 262, 143 specifications.
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 69 / 145



1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 69 / 145



Exact matching

Let Xi take on a finite number of values, x ∈ X .

Let It = {1, 2, . . . ,Nt} be the set of treated units.

Exact matching. For each treated unit, i ∈ It :

I Find the set of unmatched control units j such that Xi = Xj

I Randomly select one of these control units to be the match, indicated
j(i).

Let Ic = {j(1), . . . , j(Nt)} be the set of matched controls.

Last, discard all unmatched control units.

The distribution of Xi will be exactly the same for treated and
matched control:

P(Xi = x |Ti = 1) = P(Xi = x |Ti = 0, Ic)
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Weakening the identification assumptions

No unmeasured confounders, SUTVA, and exact matches  
identifying the ATT.

Can weaken no unmeasured confounders to conditional mean
independence (CMI):

E [Yi (0)|Xi ,Ti = 1] = E [Yi (0)|Xi ,Ti = 0]

Two nice features of CMI:

1 Only have to make assumptions about Yi (0) not Yi (1)
2 Only places restrictions on the means, not other parts of the

distribution (variance, skew, kurtosis, etc)
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Analyzing exactly matched data

How do we analyze the exactly matched data?

Dead simple difference in means:

τ̂m =
1

Nt

Nt∑
i=1

Yi −
1

Nc

∑
j∈Ic

Yj

Notice that we matched 1 treated to 1 control exactly, so we have:

τ̂m =
1

Nt

Nt∑
i=1

(Yi − Yj(i))

 average of the within matched-pair differences.
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Beyond exact matching

With high-dimensional Xi , not feasible to exact match.

Let S be a matching solution: a subset of the data produced by the
matching procedure: (It , Ic).

Suppose that this procedure produces balance:

Ti⊥⊥Xi |S

With no unmeasured confounders we have:(
Yi (0),Yi (1)

)
⊥⊥Ti |S

Balance is checkable  are Ti and Xi related in the matched data?

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 73 / 145



Beyond exact matching

With high-dimensional Xi , not feasible to exact match.

Let S be a matching solution: a subset of the data produced by the
matching procedure: (It , Ic).

Suppose that this procedure produces balance:

Ti⊥⊥Xi |S

With no unmeasured confounders we have:(
Yi (0),Yi (1)

)
⊥⊥Ti |S

Balance is checkable  are Ti and Xi related in the matched data?

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 73 / 145



Beyond exact matching

With high-dimensional Xi , not feasible to exact match.

Let S be a matching solution: a subset of the data produced by the
matching procedure: (It , Ic).

Suppose that this procedure produces balance:

Ti⊥⊥Xi |S

With no unmeasured confounders we have:(
Yi (0),Yi (1)

)
⊥⊥Ti |S

Balance is checkable  are Ti and Xi related in the matched data?

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 73 / 145



Beyond exact matching

With high-dimensional Xi , not feasible to exact match.

Let S be a matching solution: a subset of the data produced by the
matching procedure: (It , Ic).

Suppose that this procedure produces balance:

Ti⊥⊥Xi |S

With no unmeasured confounders we have:(
Yi (0),Yi (1)

)
⊥⊥Ti |S

Balance is checkable  are Ti and Xi related in the matched data?

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 73 / 145



Beyond exact matching

With high-dimensional Xi , not feasible to exact match.

Let S be a matching solution: a subset of the data produced by the
matching procedure: (It , Ic).

Suppose that this procedure produces balance:

Ti⊥⊥Xi |S

With no unmeasured confounders we have:(
Yi (0),Yi (1)

)
⊥⊥Ti |S

Balance is checkable  are Ti and Xi related in the matched data?

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 73 / 145



The matching procedure

1 Choose a number of matches

2 Choose a distance metric

3 Find matches (drop non-matches)

4 Check balance

5 Repeat (1)-(4) until balance is acceptable

6 Calculate the effect of the treatment on the outcome in the matched
dataset.
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More than 1 control match
What if we have enough controls to have M matched controls per
treated?

I P(Xi = x |Ti = 1) = P(Xi = x |Ti = 0, Ic) because M is constant
across treated units.

Now, JM(i) is a set of M control matches. Use these to “impute”
missing potential outcome.

For i ∈ It define:

Ŷi (0) =
1

M

∑
j∈JM(i)

Yj

New estimator for the effect:

τ̂m =
1

Nt

Nt∑
i=1

(Yi − Ŷi (0))

Under no unmeasured confounding, Ŷi (0) is a good predictor of the
true potential outcome under control, Yi .
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Ŷi (0) =
1

M

∑
j∈JM(i)

Yj

New estimator for the effect:

τ̂m =
1

Nt

Nt∑
i=1

(Yi − Ŷi (0))
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Under no unmeasured confounding, Ŷi (0) is a good predictor of the
true potential outcome under control, Yi .

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 75 / 145



More than 1 control match
What if we have enough controls to have M matched controls per
treated?

I P(Xi = x |Ti = 1) = P(Xi = x |Ti = 0, Ic) because M is constant
across treated units.

Now, JM(i) is a set of M control matches. Use these to “impute”
missing potential outcome.

For i ∈ It define:
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(Yi − Ŷi (0))

Under no unmeasured confounding, Ŷi (0) is a good predictor of the
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Number of matches

How many control matches should we include?

I Small M  small sample sizes
I Large M  worse matches (each additional match is further away).

If M varies by treated unit, need to weight observations to ensure
balance.
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With or without replacement

Matching with replacement: a single control unit can be matched to
multiple treated units

Benefits:

I Better matches!
I Order of matching does not matter.

Drawbacks:

I Inference is more complicated.
I  need to account for multiple appearances with weights.
I Potentially higher uncertainty (using the same data multiple times =

relying on less data).
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Defining closeness

We want to find control observations that are similar to the treated
unit on Xi .

How do we define distance/similarity on Xi if it is high dimensional?

We need a distance metric which maps two covariates vectors into a
single number.

I Lower values  more similar values of Xi .
I Choice of distance metric will lead to different matches.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 78 / 145



Defining closeness

We want to find control observations that are similar to the treated
unit on Xi .

How do we define distance/similarity on Xi if it is high dimensional?

We need a distance metric which maps two covariates vectors into a
single number.

I Lower values  more similar values of Xi .
I Choice of distance metric will lead to different matches.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 78 / 145



Defining closeness

We want to find control observations that are similar to the treated
unit on Xi .

How do we define distance/similarity on Xi if it is high dimensional?

We need a distance metric which maps two covariates vectors into a
single number.

I Lower values  more similar values of Xi .
I Choice of distance metric will lead to different matches.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 78 / 145



Defining closeness

We want to find control observations that are similar to the treated
unit on Xi .

How do we define distance/similarity on Xi if it is high dimensional?

We need a distance metric which maps two covariates vectors into a
single number.

I Lower values  more similar values of Xi .

I Choice of distance metric will lead to different matches.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 78 / 145



Defining closeness

We want to find control observations that are similar to the treated
unit on Xi .

How do we define distance/similarity on Xi if it is high dimensional?

We need a distance metric which maps two covariates vectors into a
single number.

I Lower values  more similar values of Xi .
I Choice of distance metric will lead to different matches.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 78 / 145



Exact distance metric

Exact: only match units to other units that have the same exact
values of Xi .

Dij =

{
0 if Xi = Xj

∞ if Xi 6= Xj
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Euclidean distance

The normalized Euclidean distance metric just uses the sum of the
normalized distances for each covariate.

I “Closeness” is standardized across covariates.

Suppose that Xi = (Xi1, . . . ,XiK )′, so that there are K covariates.

Then the Euclidean distance metric is:

Dij =

√√√√ K∑
k=1

(Xik − Xjk)2

σ̂2
k

Here, σ̂2
k is the variance of the kth variable:

σ̂2
k =

1

N − 1

N∑
i=1

(Xik − X̄k)
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Mahalanobis distance

Mahalanobis distance: Euclidean distance adjusted for covariance in
the data.

Intuition: if Xik and Xik ′ are two covariates that are highly correlated,
then their contribution to the distances should be lower.

I Easy to get close on correlated covariates  downweight.
I Harder to get close on uncorrelated covariates  upweight.

Metric:

Dij =

√
(Xi − Xj)′Σ̂−1(Xi − Xj)

Σ̂ is the estimated variance-covariance matrix of the observations:

Σ̂ =
1

N

N∑
i=1

(Xi − X̄ )(Xi − X̄ )T
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Complications

Combining distance metrics:

I Exact on race/gender, Mahalanobis on the rest.

Some matches are too far on the distance metric.

I Dropping those matches (treated and control) improves balance.
I Dropping treated units changes the quantity of interest.

Implementation: a caliper, which is the maximum distance we would
accept

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 82 / 145



Complications

Combining distance metrics:
I Exact on race/gender, Mahalanobis on the rest.

Some matches are too far on the distance metric.

I Dropping those matches (treated and control) improves balance.
I Dropping treated units changes the quantity of interest.

Implementation: a caliper, which is the maximum distance we would
accept

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 82 / 145



Complications

Combining distance metrics:
I Exact on race/gender, Mahalanobis on the rest.

Some matches are too far on the distance metric.

I Dropping those matches (treated and control) improves balance.
I Dropping treated units changes the quantity of interest.

Implementation: a caliper, which is the maximum distance we would
accept

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 82 / 145



Complications

Combining distance metrics:
I Exact on race/gender, Mahalanobis on the rest.

Some matches are too far on the distance metric.
I Dropping those matches (treated and control) improves balance.

I Dropping treated units changes the quantity of interest.

Implementation: a caliper, which is the maximum distance we would
accept

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 82 / 145



Complications

Combining distance metrics:
I Exact on race/gender, Mahalanobis on the rest.

Some matches are too far on the distance metric.
I Dropping those matches (treated and control) improves balance.
I Dropping treated units changes the quantity of interest.

Implementation: a caliper, which is the maximum distance we would
accept

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 82 / 145



Complications

Combining distance metrics:
I Exact on race/gender, Mahalanobis on the rest.

Some matches are too far on the distance metric.
I Dropping those matches (treated and control) improves balance.
I Dropping treated units changes the quantity of interest.

Implementation: a caliper, which is the maximum distance we would
accept

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 82 / 145



Estimands

Matching easiest to justify for the Average Treatment Effect on the
Treated.

I Dropping control units doesn’t affect this identification.

Can also identify the Average Treatment Effect on Control by finding
matched treated units for the controls.

Combine the two to get the ATE:

τ = τATTP(Ti = 1) + τATCP(Ti = 0)

Estimated:

τ̂ = τ̂ATT

(
Nt

N

)
+ τ̂ATC

(
Nc

N

)
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Moving the goalposts

Common support: finding the subspace of Xi where there is overlap
between the treated and control groups.

I Hard to extrapolate outside region.
I Theoretical: effect of voting for those under 18

(P(Di = 1|Xi < 18) = 0).
I Empirical: no/extremely few treated units in a sea of controls.
I Solution: restrict analysis to common support (dropping treated and

controls).

Moving the goalposts: dropping treated units.

I We move away from being able to identify the Average Treatment
Effect on the Treated (ATT).

I Now it’s the ATT in the matched subsample (sometimes called the
feasible ATT).

I Good to be clear about this.
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Effect on the Treated (ATT).
I Now it’s the ATT in the matched subsample (sometimes called the

feasible ATT).

I Good to be clear about this.
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Matching methods

Now that we have distances between all units, we just need to match!

For a particular unit, easy:

j(i) = arg min
j∈Jc

Dij

I Jc are the available controls for matching.

This is nearest neighbor: “Find the control unit with the smallest
distance metric.”

Do the same for all treated units.

What about ties?

I Randomly choose between them.

Note: in nearest neighbor without replacement the order matters!
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Assessing balance

All matching methods seek to maximize balance:

P(Xi = x |Ti = 1, S) = P(Xi = x |Ti = 0, S)

Choice of balance metric will determine which matching method does
better.

I If you use Mahalanobis distance as the balance metric, then matching
on the Mahalanobis score will do well because that’s what it’s designed
to do.

Options:

I Differences-in-means/medians, standardized.
I Quantile-quantile plots/KS statistics for comparing the entire

distribution of Xi .
I L1: multivariate histogram.
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Two Approaches to Matching

There are many approaches to matching. We will cover just two for
the sake of time.

This isn’t a statement that these are the best two, just a set which
are straightforward to learn.

Which is the best method? The one that produces the best balance!
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Method 1: Mahalanobis Distance Matching

1 Preprocess (Matching)

I Distance(Xi ,Xj) =
√

(Xi − Xj)′S−1(Xi − Xj)
I Match each treated unit to the nearest control unit
I Control units: not reused; pruned if unused
I Prune matches if Distance>caliper

2 Checking Measure imbalance, tweak, repeat, . . .
3 Estimation Difference in means or a model
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Mahalanobis Distance Matching

Education (years)

Age

12 14 16 18 20 22 24 26 28

20

30

40

50

60

70

80
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Method 2: Coarsened Exact Matching

1 Preprocess (Matching)

I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )

F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)

I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )

F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)

I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )

F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )

F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )

F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )

F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )
F Sort observations into strata, each with unique values of C(X )

F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )
F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )
F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )
F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .
I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1 Preprocess (Matching)
I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )
F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .
I Easier, but still iterative

3 Estimation Difference in means or a model
I Need to weight controls in each stratum to equal treateds

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 91 / 145



Coarsened Exact Matching
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Coarsened Exact Matching
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Age
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Coarsened Exact Matching

Education
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Drinking age

Don't trust anyone
over 30
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Coarsened Exact Matching

Education

Age
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Final Thoughts on Matching

Matching is an entire literature unto itself (you could probably teach
a whole class just on that). There is so much we didn’t cover here
including bias corrections and how to get variance estimators.

The central advantage of matching is that it is transparent about
where the counterfactual estimates are coming from (you can look at
the matched unit!).

Technically the thing it is buying you relative to regression methods
we will talk about next is that it limits extrapolation.

But there is no need for these techniques to compete—we can match
and then use regression!

Importantly, there is nothing magic about matching, it is just another
way of conditioning.
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Where We’ve Been and Where We’re Going...

Last Week
I frameworks for causal inference

This Week
I experimental ideal
I identification with measured confounding
I estimation via stratification, matching and regression

Next Week
I approaches with unmeasured confounding

Long Run
I causal frameworks → inference → regression → causal inference
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Regression and Causality

Regression is an estimation strategy that can be used with an
identification strategy to estimate a causal effect

When is regression causal? When the CEF is causal.

This means that the question of whether regression has a causal
interpretation is a question about identification

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 96 / 145



Regression and Causality

Regression is an estimation strategy that can be used with an
identification strategy to estimate a causal effect

When is regression causal? When the CEF is causal.

This means that the question of whether regression has a causal
interpretation is a question about identification

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 96 / 145



Regression and Causality

Regression is an estimation strategy that can be used with an
identification strategy to estimate a causal effect

When is regression causal?

When the CEF is causal.

This means that the question of whether regression has a causal
interpretation is a question about identification

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 96 / 145



Regression and Causality

Regression is an estimation strategy that can be used with an
identification strategy to estimate a causal effect

When is regression causal? When the CEF is causal.

This means that the question of whether regression has a causal
interpretation is a question about identification

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 96 / 145



Regression and Causality

Regression is an estimation strategy that can be used with an
identification strategy to estimate a causal effect

When is regression causal? When the CEF is causal.

This means that the question of whether regression has a causal
interpretation is a question about identification

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 96 / 145



Identification under Selection on Observables: Regression

Consider the linear regression of Yi = β0 + τTi + X ′i β + ui .

Given selection on observables, there are mainly three identification
scenarios:

1 Constant treatment effects and outcomes are linear in X
I τ will provide unbiased and consistent estimates of ATE.

2 Constant treatment effects and unknown functional form
I τ will provide well-defined linear approximation to the average causal

response function E [Y |T = 1,X ]− E [Y |T = 0,X ]. Approximation
may be very poor if E [Y |T ,X ] is misspecified and then τ may be
biased for the ATE.

3 Heterogeneous treatment effects (τ differs for different values of X )
I even If outcomes are linear in X , τ converges to the

conditional-variance-weighted average of the underlying causal effects
rather than the ATE.
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Ideal Case: Constant Effects Model With Linearly
Separable Confounding

Assume a data generating process with constant effects and linearly
separable confounding:

Yi (t) = Yi = β0 + τTi + ηi

Linearly separable confounding: assume that E [ηi |Xi ] = X ′i β,
which means that ηi = X ′i β + ui where E [ui |Xi ] = 0.

Yi = β0 + τTi + ηi

= β0 + τTi + X ′i β + ui

Thus, a regression where Ti and Xi are entered linearly can recover
the ATE. (The regression model matches the data generating process)
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Heterogeneous effects, binary treatment

Completely randomized experiment:

Yi = TiYi (1) + (1− Ti )Yi (0)

= Yi (0) + (Yi (1)− Yi (0))Ti

= µ0 + τiTi + (Yi (0)− µ0)

= µ0 + τTi + (Yi (0)− µ0) + (τi − τ) · Ti

= µ0 + τTi + εi

Error term now includes two components:

1 “Baseline” variation in the outcome: (Yi (0)− µ0)
2 Variation in the treatment effect, (τi − τ)

We can verify that under experiment, E [εi |Ti ] = 0

Thus, OLS estimates the ATE with no covariates.
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Adding covariates

What happens with no unmeasured confounders? Need to condition
on Xi now.

Remember identification of the ATE/ATT using iterated expectations.

ATE is the weighted sum of Conditional Average Treatment Effects
(CATEs):

τ =
∑
x

τ(x)P[Xi = x ]

ATE/ATT are weighted averages of CATEs.

What about the regression estimand, τR? How does it relate to the
ATE/ATT?
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Heterogeneous effects and regression

Let’s investigate this under a saturated regression model:

Yi =
∑
x

Bxiαx + τRTi + ei .

Use a dummy variable for each unique combination of Xi :
Bxi = I(Xi = x)

Linear in Xi by construction!
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Investigating the regression coefficient

How can we investigate τR? Well, we can rely on the regression
anatomy:

τR =
Cov(Yi ,Ti − E [Ti |Xi ])

Var(Ti − E [Ti |Xi ])

Ti − E [Ti |Xi ] is the residual from a regression of Ti on the full set of
dummies.

With a little work we can show:

τR =
E
[
τ(Xi )(Ti − E [Ti |Xi ])

2
]

E [(Ti − E [Ti |Xi ])2]
=

E [τ(Xi )σ
2
t (Xi )]

E [σ2
t (Xi )]

σ2
t (x) = Var[Ti |Xi = x ] is the conditional variance of treatment

assignment.
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ATE versus OLS

τR = E [τ(Xi )Wi ] =
∑
x

τ(x)
σ2
t (x)

E [σ2
t (Xi )]

P[Xi = x ]

Compare to the ATE:

τ = E [τ(Xi )] =
∑
x

τ(x)P[Xi = x ]

Both weight strata relative to their size (P[Xi = x ])

OLS weights strata higher if the treatment variance in those strata
(σ2

t (x)) is higher in those strata relative to the average variance
across strata (E [σ2

t (Xi )]).

The ATE weights only by their size.
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Regression weighting

Wi =
σ2
t (Xi )

E [σ2
t (Xi )]

Why does OLS weight like this?

OLS is a minimum-variance estimator  more weight to more precise
within-strata estimates.

Within-strata estimates are most precise when the treatment is evenly
spread and thus has the highest variance.

If Ti is binary, then we know the conditional variance will be:

σ2
t (x) = P[Ti = 1|Xi = x ] (1− P[Ti = 1|Xi = x ])

Maximum variance with P[Ti = 1|Xi = x ] = 1/2.
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OLS weighting example
Binary covariate:

Group 1 Group 2

P[Xi = 1] = 0.75 P[Xi = 0] = 0.25

P[Ti = 1|Xi = 1] = 0.9 P[Ti = 1|Xi = 0] = 0.5

σ2
t (1) = 0.09 σ2

t (0) = 0.25

τ(1) = 1 τ(0) = −1

Implies the ATE is τ = 0.5

Average conditional variance: E [σ2
t (Xi )] = 0.13

 weights for Xi = 1 are: 0.09/0.13 = 0.692, for Xi = 0: 0.25/0.13
= 1.92.

τR = E [τ(Xi )Wi ]

= τ(1)W (1)P[Xi = 1] + τ(0)W (0)P[Xi = 0]

= 1× 0.692× 0.75 +−1× 1.92× 0.25

= 0.039
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When will OLS estimate the ATE?

When does τ = τR? (where τR is the estimate from a regression)

Constant treatment effects: τ(x) = τ = τR
Constant probability of treatment: e(x) = P[Ti = 1|Xi = x ] = e.

I Implies that the OLS weights are 1.

Incorrect linearity assumption in Xi will lead to more bias.
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Other ways to use regression

What’s the path forward?

I Accept the bias (might be relatively small with saturated models)
I Use a different regression approach

Let µt(x) = E [Yi (t)|Xi = x ] be the CEF for the potential outcome
under Ti = t.

By SUTVA and no unmeasured confounders, we have
µt(x) = E [Yi |Ti = t,Xi = x ].

Estimate a regression of Yi on Xi among the Ti = t group.

Then, µ̂d(x) is just a predicted value from the regression for Xi = x .

How can we use this?
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Imputation estimators

Impute the treated potential outcomes with Ŷi (1) = µ̂1(Xi )!

Impute the control potential outcomes with Ŷi (0) = µ̂0(Xi )!

Procedure:

I Regress Yi on Xi in the treated group and get predicted values for all
units (treated or control).

I Regress Yi on Xi in the control group and get predicted values for all
units (treated or control).

I Take the average difference between these predicted values.

More mathematically, look like this:

τimp =
1

N

∑
i

µ̂1(Xi )− µ̂0(Xi )

Sometimes called an imputation estimator.
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Imputation estimator visualization
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Nonlinear relationships

Same idea but with nonlinear relationship between Yi and Xi :
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Using semiparametric regression

Here, CEFs are nonlinear, but we don’t know their form.

We can use GAMs from the mgcv package for flexible estimate.
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Using GAMs
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Imputation Estimators

Imputation estimators (also called the parametric g-formula) are a
great and underutilized technique (to learn more, check out Naimi,
Cole, and Kennedy, 2017).

It is harder to implement than vanilla OLS particularly for uncertainty
estimation, but you can always bootstrap!

If µ̂t(x) are consistent estimators, then τimp is consistent for the ATE.

To be flexible, people are increasingly using machine learning
techniques like: kernel regression, neural networks, regression trees,
etc.

As we just saw, GAMs are a nice trade-off of the ease vs. flexibility
side.

These kinds of things will tend to matter a lot more for conditional
treatment effects than the overall aggregate treatment effect, but you
also don’t know for sure until you try.
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Example from Lundberg, Johnson and Stewart

Weakest assumptions
(most credible)

Very uncertain
gaps within
subgroups

All estimation strategies
estimate a similar

aggregate gap

With this assumption,
evidence shows a gap
at young ages only

Strongest assumptions
(least credible)

This panel parallels the estimand and
 specification in Pal and Waldfogel (2016)

Additive OLS assumes
a constant effect.
Clearly this model
is only an approximation.

Stratification:
No estimation assumptions

Race + Marital +
(Age indicators x Motherhood)

Race + Marital +
(Age smooth x Motherhood)

Race + Marital +
(Age quadratic x Motherhood)

Race + Marital +
Age quadratic + Motherhood

Aggregate
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Age−specific
gap
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All the Steps Together

1) Set the target. Define a theoretical estimand. Requires substantive argument.

Average difference in the potential outcome each woman i would realize

τ = 1
n

∑n
i=1

( if she were an employed mother

Yi (Mother, Employed)

versus

−

if she were an employed non-mother

Yi (Non-mother, Employed)

)

Requires conceptual assumptions.2) Link to observables. Define an empirical estimand.

Average difference in the realized outcomes of women with the covariates ~xi of women i who

θ = 1
n

∑n
i=1

( actually are mothers

E(Y | ~X = ~xi ,Motherhood = Mother)

versus

−

actually are not mothers

E(Y | ~X = ~xi ,Motherhood = Non-mother)

)

3) Learn from data. Select an estimation strategy. Requires statistical evidence.

Average difference in the regression prediction at the covariates ~xi of women i if we

θ̂ = 1
n

∑n
i=1

( recode as a mother

Ê(Y | ~X = ~xi ,Motherhood = Mother)

versus

−

recode as not a mother

Ê(Y | ~X = ~xi ,Motherhood = Non-mother)

)
estimate of
the estimand

estimated Ŷi (Mother) estimated Ŷi (Non-mother)
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Connections to the Coefficient In Regression

Ê(Y | ~X = ~xi ,Motherhood)

=

{
α̂ + ~x ′

i ~̂γ if Motherhood = Non-Mother

α̂ + β̂ + ~x ′
i ~̂γ if Motherhood = Mother

By parametric
approximation

Intercept Coefficient on
motherhood

Coefficients on
other covariates

θ̂ =
1

n

n∑
i=1

( Ŷi (Mother)︷ ︸︸ ︷(
α̂ + β̂ + ~x ′i ~̂γ

)
−

Ŷi (Non-mother)︷ ︸︸ ︷(
α̂ + ~x ′i ~̂γ

) )

=
1

n

n∑
i=1

(
α̂ + ~x ′i ~̂γ − α̂− ~x ′i ~̂γ

)
︸ ︷︷ ︸

Cancels because model
assumes no interactions

+
1

n

n∑
i=1

β̂

= β̂ ← coefficient on motherhood
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Fun With Weights

Aronow, Peter M., and Cyrus Samii. ”Does Regression Produce
Representative Estimates of Causal Effects?.” American Journal of
Political Science (2015).2

Imagine we care about the possibly heterogeneous causal effect of a
treatment T and we control for some covariates X?

We can express the regression as a weighting over individual
observation treatment effects where the weight depends only on X .

Useful technology for understanding what our models are identifying
off of by showing us our effective sample.

2I’m grateful to Peter Aronow for sharing his slides, several of which are used here.
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How this works

We start by asking what the estimate of the average causal effect of
interest converges to in a large sample:

β̂
p→ E [wiτi ]

E [wi ]
where wi = (Ti − E [Ti |X ])2 ,

so that β̂ converges to a reweighted causal effect. As
E [wi |Xi ] = Var[Ti |Xi ], we obtain an average causal effect reweighted by
conditional variance of the treatment.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 125 / 145



How this works

We start by asking what the estimate of the average causal effect of
interest converges to in a large sample:

β̂
p→ E [wiτi ]

E [wi ]
where wi = (Ti − E [Ti |X ])2 ,

so that β̂ converges to a reweighted causal effect. As
E [wi |Xi ] = Var[Ti |Xi ], we obtain an average causal effect reweighted by
conditional variance of the treatment.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 125 / 145



How this works

We start by asking what the estimate of the average causal effect of
interest converges to in a large sample:

β̂
p→ E [wiτi ]

E [wi ]
where wi = (Ti − E [Ti |X ])2 ,

so that β̂ converges to a reweighted causal effect. As
E [wi |Xi ] = Var[Ti |Xi ], we obtain an average causal effect reweighted by
conditional variance of the treatment.

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 125 / 145



Estimation

A simple, consistent plug-in estimator of wi is available: ŵi = T̃ 2
i where

T̃i is the residualized treatment. (the proof is connected to the partialing
out strategy)

Easily implemented in R:

wts <- (t - predict(lm(t~x)))^2
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i where

T̃i is the residualized treatment. (the proof is connected to the partialing
out strategy)

Easily implemented in R:

wts <- (t - predict(lm(t~x)))^2

Stewart (Princeton) Week 10: Measured Confounding November 2–6, 2020 126 / 145



Implications

Unpacking the black box of regression gives us substantive insight

When some observations have no weight, this means that the
covariates completely explain their treatment condition.

This is a feature, not a bug, of regression: we can’t learn anything
from those cases anyway (i.e. it is automatically handling issues of
common support).

The downside is that we have to be aware of what happened!
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Application

Jensen (2003), “Democratic Governance and Multinational Corporations:
Political Regimes and Inflows of Foreign Direct Investment.”

Jensen presents a large-N TSCS-analysis of the causal effects of
governance (as measured by the Polity III score) on Foreign Direct
Investment (FDI).

The nominal sample: 114 countries from 1970 to 1997.

Jensen estimates that a 1 unit increase in polity score corresponds to a
0.020 increase in net FDI inflows as a percentage of GDP (p < 0.001).
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Nominal and Effective Samples
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Nominal and Effective Samples

Over 50% of the weight goes to just 12 (out of 114) countries.
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Broader Implications

When causal effects are heterogeneous, we can draw a distinction between
“internally valid” and “externally valid” estimates of an Average
Treatment Effect (ATE).

“Internally valid”: reliable estimates of ATEs, but perhaps not for the
population you care about

I randomized (lab, field, survey) experiments, instrumental variables,
regression discontinuity designs, other natural experiments

“Externally valid”: perhaps unreliable estimates of ATEs, but for the
population of interest

I large-N analyses, representative surveys
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Broader Implications

Aronow and Samii argue that analyses which use regression, even with a
representative sample, have no greater claim to external validity than do
[natural] experiments.

When a treatment is “as-if” randomly assigned conditional on
covariates, regression distorts the sample by implicitly applying
weights.

The effective sample (upon which causal effects are estimated) may
have radically different properties than the nominal sample.

When there is an underlying natural experiment in the data, a
properly specified regression model may reproduce the internally valid
estimate associated with the natural experiment.
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We Covered

Regression based estimation of causal effects under measured
confounding.

Imputation estimators which generalize to broader class of machine
learning estimators for the conditional expectation function.

A fun with about how the weighting interpretation can tell you about
your sample.

Next Time: Estimands
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Where We’ve Been and Where We’re Going...

Last Week
I frameworks for causal inference

This Week
I experimental ideal
I identification with measured confounding
I estimation via stratification, matching and regression

Next Week
I approaches with unmeasured confounding

Long Run
I causal frameworks → inference → regression → causal inference
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1 The Experimental Ideal

2 Identification with Measured Confounding
Design
DAGs

3 Stratification

4 Matching
Fundamentals of Matching
Two Approaches to Matching

5 Regression
Regression with Heterogeneous Effects
Imputation Estimators
Fun With Weights

6 Estimands
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Estimands

Estimand name Mathematical statement DAG Reference Colloquial terms

Average treatment
effect

1
n

∑
i Yi (d

′)− Yi (d) D Y Morgan and
Winship (2015)

Effect

Conditional average
treatment effect

1
nx

∑
i :Xi=x(Yi (d

′)− Yi (d))
X D Y Athey and Imbens

(2016)

Effect
heterogeneity or
moderation

Causal interaction

1

n

∑
i

((
Yi (a

′, d ′)− Yi (a
′, d)

)
−
(
Yi (a, d

′)− Yi (a, d)

))
A

D

Y

Vanderweele 2015
Joint treatment
effect

Controlled direct
effect

1

n

∑
i

(
Yi (d

′,m)− Yi (d ,m)

)
D

M

Y Acharya Blackwell
and Sen (2016)

Mediation

Natural direct effect
1

n

∑
i

(
Yi (d

′,Mi (d))− Yi (d ,Mi (d))

)
D

M

Y Imai et al 2011 Mediation

Effect of dynamic
treatment regime

1
n

∑
i Yi (d

′
1, d
′
2)− Yi (d1, d2)

D1 D2 Y
Wodtke et al 2011 Cumulative effect
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Misunderstandings Between Experimentalists and
Observationalists (Imai, King, Stuart 2008)

Despite a common framework, there are still disagreements between
experimental and observational design approaches

Mostly related to the debate between internal and external validity of
estimates

Most researchers are inherently interested in Population Average
Treatment Effects (PATE)
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Decomposition of Causal Effect Estimation Error

Difference in means estimator:

D ≡

 1

n/2

∑
i ∈{Ii=1,Ti=1}

Yi

−
 1

n/2

∑
i ∈{Ii=1,Ti=0}

Yi

 .

Estimation Error:

∆ ≡ PATE− D

Pretreatment confounders: X are observed and U are unobserved

Decomposition:

∆ = ∆S + ∆T

= (∆SX
+ ∆SU

) + (∆TX
+ ∆TU

)

Error due to ∆S (sample selection), ∆T (treatment imbalance), and each
due to observed (Xi ) and unobserved (Ui ) covariates

Note: Analogous decompositions hold for other estimands of interest.
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Selection Error

Definition:

∆S ≡ PATE− SATE

=
N − n

N
(NATE− SATE),

where NATE is the nonsample average treatment effect.

∆S vanishes if:
1 The sample is a census (Ii = 1 for all observations and n = N);
2 SATE = NATE; or
3 Switch quantity of interest from PATE to SATE
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Decomposing Selection Error

Decomposition:
∆S = ∆SX + ∆SU

∆SX = 0 when empirical distribution of (observed) X is identical in

population and sample: F̃ (X | I = 0) = F̃ (X | I = 1).

∆SU = 0 when empirical distribution of (unobserved) U is identical in

population and sample: F̃ (U | I = 0) = F̃ (U | I = 1).

conditions are unverifiable: X is observed only in sample and U is not
observed at all.

∆SX vanishes if weighting on X

∆SU cannot be corrected after the fact
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Decomposing Treatment Imbalance

Decomposition:
∆T = ∆TX

+ ∆TU

∆TX
= 0 when X is balanced between treateds and controls:

F̃ (X | T = 1, I = 1) = F̃ (X | T = 0, I = 1).

Verifiable from data; can be generated ex ante by blocking or
enforced ex post via matching or parametric adjustment

∆TU
= 0 when U is balanced between treateds and controls:

F̃ (U | T = 1, I = 1) = F̃ (U | T = 0, I = 1).

Unverifiable. Achieved only by assumption or, on average, by random
treatment assignment
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Decomposing Treatment Imbalance
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Effects of Design Components on Estimation Error

Design Choice ∆SX ∆SU ∆TX
∆TU

Random sampling
avg
= 0

avg
= 0

Complete stratified random sampling = 0
avg
= 0

Focus on SATE rather than PATE = 0 = 0
Weighting for nonrandom sampling = 0 =?
Large sample size →? →? →? →?

Random treatment assignment
avg
= 0

avg
= 0

Complete blocking = 0 =?
Exact matching = 0 =?

By Assumption

No selection bias
avg
= 0

avg
= 0

Ignorability
avg
= 0

No omitted variables = 0
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The Benefits of Major Research Designs: Overview

∆SX ∆SU ∆TX
∆TU

Ideal experiment → 0 → 0 = 0 → 0
Randomized trials

(Limited or no blocking) 6= 0 6= 0
avg
= 0

avg
= 0

Randomized trials

(Full blocking) 6= 0 6= 0 = 0
avg
= 0

Survey Experiment
(Limited or no blocking), no non-response →? →? → 0 → 0
Observational Study
(Representative data set,
Well-matched) ≈ 0 ≈ 0 ≈ 0 6= 0
Observational Study
(Unrepresentative but partially,
correctable data, well-matched) ≈ 0 6= 0 ≈ 0 6= 0
Observational Study
(Unrepresentative data set,
Well-matched) 6= 0 6= 0 ≈ 0 6= 0
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This Week in Review

The Experimental Ideal

Identification with Measured Confounding

Estimation by Stratification, Matching and Regression

Next week: Selection with Unmeasured Confounding!
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