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Appendix RoadMap
In this appendix I provide additional details of materials omitted from the main paper.
Appendix A includes a summary of technical contributions as well as details of the esti-
mation algorithms. Appendices B-D provide additional insights into particular areas of
the literature. Appendices E-F provide additional details on simulations and applications.

A Variational Inference Algorithms
This appendix details the six algorithms employed in the main text along with a
short discussion of the technical contributions of the paper and a comparison to
existing software implementations.

B Alternative Approaches
This section extends the literature review to include alternative approaches to mod-
eling heterogeneity. Many of these models take a fundamentally different approach
than I have taken here and the contrast clarifies the benefits and tradeoffs of the
latent factor framework.

C Two-Way Fixed Effects and Latent Factor Regression
This appendix outlines the connection between special cases of the latent factor
regression framework and two-way and joint fixed effects estimator. The connections
help to illuminate how the model works with a particular focus on causal estimation
in a potential outcomes framework.

D Improving Accuracy of the Variational Framework
This appendix discusses possible approaches for improving accuracy in the vari-
ational inference framework. It covers two possible improvements: those geared
towards improved modeling on non-Gaussian (and thus non-conjugate) models, and
those geared towards weakening the factorization assumptions in the approximate
posterior.
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1



E Simulation
Here I provide the details to replicate the simulation results in the main paper.

F Additional Application Details
This section collects additional details and results from the applications. Currently
it includes a comparison of the two different temporal detrending strategies in Büthe
and Milner (2008) and King and Roberts (2014).

A Variational Inference Algorithms
The goal of this appendix is to clarify the technical contributions of the latent factor
regressions project and offer details on the estimation algorithms. Both the model design
and estimation strategy draw from existing components in the literature, but combine
them in novel ways. This work is distinguished from prior work by the development of a
more general framework and attention to the demands of applied data analysis.

Specific novel contributions include:

1. Gaussian Markov Random Field (GMRF) priors with factorization models
This allows the user to optionally include information about how units are connected
(such as temporal or spatial smoothness). Thus they form a complement to the
factorization models: GMRF’s provide a flexible framework for encapsulating known
information and factorization models infer unknown information.1

2. Variational Inference for Factorization Models with Observed Covariates
Prior work used Gibbs sampling methods which are often too slow for applied use.
I build on and extend variational inference algorithms for the class of latent factor
models. These contributions are discussed in more detail below.

3. Initialization Strategies using Spectral Methods
Prior work on variational algorithms has generally not discussed the important
role of initialization. I draw on recently developed spectral methods for parameter
estimation to develop strong initialization strategies for the model.

Taken together the above contributions make the latent factor model a practical approach
to modeling heterogeneity in social science data.

In the next section I provide a summary of technical contributions as well as a com-
parison to existing software implementations. In the sections that follow I summarize the
six estimation algorithms that are used throughout the paper. They are briefly summa-
rized in Table 1. Algorithms 1 and 2 are direct translations of Lee and Wand (2014) but
are detailed here because they serve as building blocks for the more complicated models
in Algorithms 3-6.

1This contribution is about model design and is not further discussed in this appendix. Estimation is
treated in the main paper Section 4.3.2 and follows straightforwardly from Algorithms 1-6 below.
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# of Latent Factors
1 2 (Matrix) 3+ (Tensor)

Gaussian Reg. Alg 1 Alg 3∗ Alg 5∗

Logit Alg 2 Alg 4∗ Alg 6∗

Table 1: Algorithms detailed below. Those marked with ∗ are new to this paper.

Brief Reminder:
In the sections that follow I assume a general familiarity with the main text of the
latent factor regressions paper. The paper uses primarily two examples which have
the following salient details:

1. Foreign Direct Investment (FDI) (Büthe and Milner, 2008)
A time-series cross sectional dataset with 118 countries and 31 years. The panels
are unbalanced with approximately 30% of the entries missing.

2. Democratic Peace (Ward, Siverson and Cao, 2007)
A directed-dyadic time dataset with 165 source countries, 165 receiver countries
and 10 time periods.

A.1 Summary of Technical Contributions

The goal of this section is clarify the technical contributions of the latent factor regressions
project before proceeding to the specific algorithms. Both the model design and estimation
strategy draw from existing components in the literature, but combine them in novel
ways. This work is distinguished from prior work by the development of a more general
framework and attention to the demands of applied data analysis.

Estimation in the latent factor regression framework is the combination of estimation
strategies for three components of the model: the matrix/tensor factorization component,
the GLM/regression component and the prior structure. Each of these three has been con-
sidered in the variational inference literature although never in combination. Variational
approaches to matrix factorization (Lim and Teh, 2007) and tensor factorization (Zhao,
Zhang and Cichocki, 2014) have been developed for a squared loss function. Separate
work has considered generalized linear models, such as logistic regression (Jaakkola and
Jordan, 2000), and varying intercept/coefficient hierarchical extensions (Lee and Wand,
2014). Finally, variational inference algorithms have been proposed for various prior
structures such as the Half-Cauchy and Scaled Inverse-Wishart priors (Wand et al., 2011;
Huang and Wand, 2013) both of which I use in the main text.

Algorithms 1-6 of the latent factor regression cover the estimation strategy. These are
summarized in Table 1 and are briefly summarized below before being more extensively
covered in later sections.

Algorithms 1 and 2 (used in simulations) are direct translations of previous work done
in Matt Wand’s research group (Menictas and Wand, 2013; Wand, 2014; Lee and Wand,

3



2014).2 They are included because they serve as useful building blocks for the models
which include latent factors. Algorithms 3/4 involve the combination of Algorithms 1/2
with prior work on variational algorithms for Gaussian matrix factorization (Lim and
Teh, 2007). The combination of the matrix factorization with observed covariates is
novel and thus required new derivations. Furthermore to the best of my knowledge there
had not been a simple variational treatment for the binary outcome matrix factorization
model (even without observed covariates).3 Finally Algorithms 5 and 6 (hierarchical linear
regression and logistic regression models with tensor factorization components) involve the
combination of prior work on Gaussian tensor factorization (Zhao, Zhang and Cichocki,
2014) with Algorithms 1 and 2. Here again the combination of the factorization models
with regressions required new derivations both due to the inclusion of covariates as well
as the extension to binary outcomes.4

Use of alternative prior structures involve a fairly direct translation of work in Wand
et al. (2011) and Huang and Wand (2013). These had not yet been combined with
factorization models however doing so poses no major technical challenges.

One of the challenges in the use of variational inference algorithms is the presence of
many local optima in the objective function. Although initialization of variational algo-
rithms is rarely discussed, it is extremely important in this particular case. I address this
by using recent spectral estimators for the parameters. For the matrix case I leverage
the results of (Nakajima et al., 2013) which establish a direct connection between a trun-
cated singular value decomposition and the global variational solution for fully-observed
Gaussian matrix factorization. Despite the obvious implications for initializing variational
inference I’ve seen no prior work that leverages this connection.5

A.1.1 Comparison to Existing Implementations

Despite a plethora of previous articles there are very few available implementations of
existing methods. This dramatically limits their use in applied work. Here I highlight the
only publicly available tools for estimating related models. Each is designed to a particular
task that is too narrow to accommodate many applications in the social sciences (including
the two applications in the paper).

Peter Hoff’s group has released software which covers the matrix factorization case
with observed covariates where the outcome matrix is symmetric (eigenmodel R package
(Hoff, 2012), amen R package (Hoff et al., 2014)). These packages are designed for the

2The work of Wand’s group extends prior results particularly Jaakkola and Jordan (2000) and Jordan
et al. (1999) to address various practical concerns in implementation.

3Some caveats are in order here. Notably Salter-Townshend and Murphy (2013) and Bailey Fosdick’s
dissertation Fosdick (2013) contain variational algorithms for binary outcomes with Gaussian latent
factors. However neither has closed form updates due to nonconjugacy resorting to either gradient
descent (Salter-Townshend and Murphy, 2013) or Gibbs sampling (Fosdick, 2013).

4I know of no variational algorithms for binary outcome tensor factorization models. Instead recent
work has approached this computational problem by using various tricks to speed up Gibbs sampling
(Rai et al., 2014).

5Although a similar strategy has been used in related areas (Zhang et al., 2014) including my own
work on topic models (Roberts, Stewart and Tingley, N.d.). See also Seeger and Bouchard (2012) which
uses the Nakajima and Sugiyama (2011) estimator within an EM algorithm as a means of updating the
parameters.
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analysis of (small) undirected networks and use MCMC methods which can be quite slow
to converge. They can handle some missingness in the outcome through imputation within
the model. These packages are extremely effective for their intended purpose but fail for
large data and non-network settings. For example in the FDI example from the main
paper the data does not form an undirected network and thus cannot be modeled using
either of the aforementioned packages. The democratic peace application can be treated
as a collection of 10 networks (one for each time point) but cannot be modeled together.

Bada and Liebel (Bada and Liebl, 2014) have released an R package for panel data
analysis (phtt) which includes an implementation of the interactive fixed effects frame-
work described in Bai (2009). In contrast to the Bayesian estimators considered here this
uses maximum likelihood which requires a parameterization of the fixed effects that make
the parameter estimates order dependent.6 It also crucially requires balanced panels (i.e.
that all cross-sections contain the same number of observations) and only allows for Gaus-
sian outcomes. While the estimators are substantially faster than the network models,
the balanced panel restriction is an extremely demanding requirement in practice. For the
FDI analysis the 118 country panel has approximately 30% of the cells missing and would
require a substantial drop in either the number of countries or the number of time periods
to be estimable under the interactive fixed effects framework. This is a typical problem
for social science data particularly in international relations and comparative politics.7

In both the network and panel data models the number of latent factors must be
set by hand. This is a huge practical obstruction as it requires information from the
analyst that they are ill-prepared to provide (having little information about what the
factors are). This is slightly less problematic in the panel data setting where the speed
of the estimator makes it possible to simply run the model many times and use model
fit statistics to adjudicate amongst the solutions. By contrast, my approach integrates
selection of the number of latent factors into the model itself.

It is worth emphasizing that all three packages do an excellent job for the types of
data for which they were designed. However, my observation in the main text is that the
same model structure is applicable to a broader range of problems. It is to these newer
applications that the existing software implementations are not well suited.

Surprisingly there aren’t even any variational implementation of hierarchical linear
and generalized linear models. There are several R packages for MCMC algorithms such
as MCMCpack but fast alternatives are limited to quasi-likelihood methods and Laplace
approximations such as provided by lme4. Thus even implementation of Algorithms 1
and 2 (which are not novel in themselves) constitutes a useful contribution to the research
community. Implementations which are sufficiently scalable to accommodate political
science data with hundreds of groups and thousands of observations are made possible

6That is, the parameter estimate for a country is different if its listed first rather than last. This is
less problematic for a naturally ordered set of groups such as time but is more annoying for unordered
groups such as countries.

7It is worth noting that the problem may arise even when data is not, strictly speaking, “missing.”
For example when a new country is created it enters the dataset at a particular time. The previous years
aren’t “missing” because it is an ill-defined quantity. However, the interactive fixed effects framework
will still fail to work in this instance.
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by the computational strategies described in Lee and Wand (2014) for which my software
will be the first publicly available implementation.8

A.2 Algorithm 1: Hierarchical Gaussian Linear Models

Algorithm 1 for hierarchical Gaussian linear models is a direct translation of Algorithms 1
and 2 in Lee and Wand (2014). It serves as a core building block for the later algorithms
as well.

A.2.1 Preliminaries

In the case of a single mode problem the latent factor regression framework reduces to
hierarchical modeling. Algorithm 1 covers the particular case of a Gaussian likelihood
with varying intercepts and slopes and weakly informative priors. With groups indexed
by g the model is given by

y|β, u ∼ Normal(Xβ + Zu, σ2
ε ) (1)

ug|ΣR ∼ Normal(0,ΣR) (2)

where X collects the covariates with globally shared effects and Z is a block diagonal
matrix over groups containing effects which are group specific. The positive definite
covariance matrix ΣR captures the covariance across the group-specific effects. Note that
the R superscript is only a notational reminder that these are the covariances of the
random effects.

With conjugate priors for β, σ2,ΣR the entire model is conditionally conjugate which
significantly simplifies inference,

σ2
ε ∼ Inverse-Gamma(aε, bε) (3)

ΣR ∼ Inverse-Wishart(AΣR , BΣR) (4)

β ∼ Normal(0, σ2
βIP ) (5)

where P is the number of columns of X and σ2
β is a large value strictly greater than 0.

A.2.2 Non-Conjugate Priors

However, in practice it may be better to use a more weakly informative prior for variance
components (Gelman, 2006). By using the data augmentation results in Wand et al.
(2011) we can adopt non-conjugate priors such as the Half-Cauchy distribution (Gelman,
2006) and the scaled inverse Wishart (Huang and Wand, 2013).

Wand et al. (2011) shows that the Half Cauchy can be represented by

ρ2
i,r ∼ Inverse-Gamma(.5, 1/ai,r) (6)

ai,r ∼ Inverse-Gamma(.4, 1/A2
i,r) (7)

8The algorithms in Lee and Wand (2014) are non-trivial to implement deriving mostly from careful
inversion of particular types of sparse matrices. Thus a practitioner is unlikely to find the paper and
implement the methods on their own.
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where the marginal distribution for ρ2
i,r is now Half-Cauchy(Ai,r). The multivariate ex-

tension of the Half Cauchy distribution is given by Huang and Wand (2013)

ΣR|aR1 , . . . , aRqR ∼ Inverse-Wishart(ν + qR − 1, 2νdiag(1/aR1 , . . . , 1/a
R
qR) (8)

aR1 . . . a
R
qR

ind.∼ Inverse-Gamma(.5, 1/A2
Rr) (9)

where ν is a parameter set by the user. When ν = 2 the correlation parameters have
uniform distributions over (-1,1) and the standard deviations have Half-t distributions
with 2 degrees of freedom (Huang and Wand, 2013).

A.2.3 Variational Approximation

The approximation to the full joint posterior is

p(β, u, aR, au, aε,Σ
R, σ2

uσ
2
ε ) ≈ q(β, u, ar, au, aε)q(Σ

R, σ2
u, σ

2
ε ) (10)

= q(β, u)q(ΣR)q(σ2
ε )q(aε)

qr∏
r=1

q(aRr )
L∏
`=1

q(au`)
L∏
`=1

q(σ2
u`) (11)

where in the first line we give the approximate posterior under a minimal product restric-
tion (Menictas and Wand, 2013) and the second line follows due to induced factorizations
(Bishop, 2006; Lee and Wand, 2014).

Thus the approximate evidence lower bound can be given as:

log p(y; q) = Eq{log p(β.u, aR, au, aε,Σ
R, σ2

u, σ
2
ε )− log q(β.u, aR, au, aε,Σ

R, σ2
u, σ

2
ε )} (12)

Under standard variational inference theory (Bishop, 2006; Grimmer, 2010), the op-
timal approximating densities to maximize Equation 12 for a generic parameter θ take
the form

q(θ) = exp(Eq(−θ)log(p(θ|rest)) (13)

Because the model is in the conjugate exponential family (after data augmentation for
the priors) the approximate posteriors are in the same family as their prior distributions.
Each approximating family is described below.

A.2.4 Optimal Variational Densities

Algebraic manipulations show these forms to be

q(β, u) = Normal(µq(β,u),Σq(β,u))

q(σ2
ε ) = Inverse-Gamma(.5(N + 1), Bq(σ2

ε ))

q(aε) = Inverse-Gamma(1, Bq(aε))

q(σ2
u`) = Inverse-Gamma(.5(qG` + 1), Bq(σ2

u`)

q(au`) = Inverse-Gamma(1, Bq(au`))

q(aRr ) = Inverse-Gamma(.5(ν + qR), Bq(aRr ))

q(ΣR) = Inverse-Wishart(ν +m+ qr − 1, Bq(ΣR))
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where µq(β,u),Σq(β,u) are the mean and covariance of q(β, u) and the parameters B are the
rate parameters of the various approximating distributions. Estimation proceeds through
cyclical coordinate ascent on the variational distributions.

The above algorithm only works well when the number of groups is not too large.
To make the algorithm scalable I follow Lee and Wand (2014) in defining a streamlined
algorithm which uses some matrix algebra tricks to allow for effective inversion of the large
matrices. For this we partition parameters into groups G and R where the R group are
the random intercepts and coefficients for a large number of groups and the G parameters
collect any remaining parameters. Further define the matrix CG ≡ [XZG].

This allows us to use the following sequence of updates

Gi ← µq(1/σ2
ε )(C

G
i )TXR

i (14)

Hi ← {µq(1/σ2
ε )(X

R
i )T (XR

i ) +Mq((ΣR)−1)}−1 (15)

S ← S +GiHiG
T
i (16)

s← s+GiHi(X
R
i )Tyi (17)

Σq(β,uG) ←
{
µq(1/σ2

ε )(C
G)TCG +

[
σ−2
β 0
0 blockdiag(µq(1/σ2

u`)
IqG` )

]
− S

}−1

(18)

µq(β,uG) ← µq(1/σ2
ε )Σq(β,uG)

{
(CG)Ty − s

}
(19)

Σq(uRi ) ← Hi +HiG
T
i Σq(β,uG)GiHi (20)

µq(uRi ) ← Hi

{
µq(1/σ2

ε )(X
R
i )Tyi −GT

i µq(β,uG)

}
(21)

(22)

Bq(σ2
ε ) ← µq(1/aε) + .5

∥∥∥∥∥∥y − CGµq(β,uG) −

XR
1 µq(uR1 )

...
XR
mµq(uRm)

∣∣∣∣∣∣
+ tr{(CG)TCGΣq(β,uG)}

+
m∑
i=1

tr{(XR
i )TXR

i Σq(uRi )} − 2µ−1
q(1/σ2

ε )

m∑
i=1

tr
(
GiHiG

T
i Σq(β,uG)

)
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µq(1/σ2
ε ) ← .5(

m∑
i=1

ni + 1)/Bq(σ2
ε ) (23)

µq(1/aε) ← 1/{µq(1/σ2
ε ) + A−2

ε } (24)

Bq(aRr ) ← ν
(
Mq((ΣR)−1)

)
rr

+ A−2
Rr (25)

µq(1/aRr ) ← .5(ν + qR)/Bq(aRr ) (26)

Bq(ΣR) ←
m∑
i=1

(
µq(uRi )µ

T
q(uRi ) + Σq(uRi )

)
+ 2νdiag

(
µq(1/aR1 ), . . . , µq(1/aR

qR
)

)
(27)

Mq((ΣR)−1) ← (ν +m+ qR − 1)B−1
q(ΣR)

(28)

µq(1/au`)) ← 1/{µq(1/σ2
u`)

+ A−2
u` } (29)

µq(1/σ2
u`)
← qG` + 1

2µq(1/au`) +
∣∣∣µq(µG` )

∣∣∣2 + tr(Σq(uG` ))
(30)

A.2.5 Algorithm 1

With the updates given we can now state algorithm 1. Numbers in parentheses indicate
the equation number for the update.

1: repeat
2: S ← 0
3: s← 0
4: for i = 1 . . .m do
5: Update Gi (14), Update Hi (15)
6: Update S (16), Update s (17)
7: end for
8: Update Σq(β,uG) (18, Update µ(q(β,uG) using (19)
9: for i = 1 . . .m do

10: Update Σq(uRi ) (20), Update µq(uRi ) (21)
11: end for
12: Update Bq(σ2

ε ) (22)
13: Update µq(1/σ2

ε ) (23)
14: Update µq(1/aε) (24)
15: for r = 1, . . . , qR do
16: Update Bq(aRr ) (25), Update µq(1/aRr ) (26)
17: end for
18: Update Bq(ΣR) (27)
19: Update Mq(ΣR)−1 (28)
20: for ` = 1 . . . L do
21: Update µq(1/au`) (29), Update µq(1/σ2

u`)
(30)

22: end for
23: until convergence in p(y; q)
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A.2.6 Computation

A few quick notes that help to speed implementation in practice:

• Use R’s native recycling to avoid matrix multiplication with a diagonal matrix.

• The matrix inverses all involve matrices which are guaranteed to be positive definite
and thus can be inverted quickly through the Cholesky decomposition.

• Many of the operations particularly (CG)T (CG) can be cached.

• Many of the symmetric matrices can be computed more rapidly using R’s crossprod
function to avoid computing both off-diagonals.

A.3 Algorithm 2: Hierarchical Logistic Regression

Algorithm 2 is a direct translation of Algorithm 3 in Lee and Wand (2014). Again it
serves as a useful building block for later algorithms. Minor changes are made to the
notation and presentation to fit the context.

A.3.1 Variational Approximation

In logistic regression, a Bernoulli likelihood over y ∈ {−1, 1} is parameterized by the
sigmoid (inverse-logit) function of the parameters:

P (y|η) = σ(yη) (31)

where η is the linear predictor and σ is the sigmoid function 1
1+exp(−η)

.9

The log-likelihood is then

logp(y) =
∑
n

log(σ(ynηn)) (32)

However this leads to an intractable expectation in the variational approximation. Instead
I introduce an additional local variational bound on the marginal likelihood. Following
Jaakkola and Jordan (2000) I approximate the sigmoid term using a quadratic lower
bound such that

σ(yη) ≥ σ(ξ)exp
(
(yη − ξ)/2− λ(ξ)

(
(yη)2 − ξ2

))
(33)

λ(ξ) = tanh(ξ/2)/(4ξ) (34)

which introduces a new variational parameter ξ for each data point. The bound is tight
at the optimal value of ξ. With the introduction of the parameters ξ the data likelihood
is now a quadratic function of the parameters to be optimized and thus we get a normal
variational distribution for our regression coefficients with closed form mean and variances.
λ(ξ) ends up playing the role of inverse error variances in a regression style update.

9Although this representation is less standard in the social sciences, the symmetric form of the likeli-
hood simplifies the notation below.
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Jaakkola and Jordan (2000) show that the optimal values of the variational parame-
ters can also be solved in closed form by

ξ =
√
E[η2] (35)

=

√
diagonal

(
C{Σq(β,u,ξ) + µq(β,u;ξ)µTq(β,u,ξ)}CT

)
(36)

Thus the entire procedure contains only closed form updates and does not need to resort
to numerical optimization. Because the approximation to the sigmoid function is a lower
bound, the Evidence Lower Bound is still a true lower bound on log(p(y)).

The justification of Jaakkola and Jordan (2000) is based on constructing a lower
bound for the marginal likelihood using convex duality. Additionally, recent work by
Scott and Sun (2013) has given a probabilistic interpretation showing the connection
to data augmentation using the Polya-Gamma latent variable family (Polson, Scott and
Windle, 2013).

A.3.2 Optimal Densities

Conditional latent variables ξ we get a normal density for q(β, u) which means that
optimization proceeds much as in Algorithm 1. I define some new terms (in the same
style as above) before defining Algorithm 2.

Gi ← 2(CG
i )Tdiag{λ(ξi)}XR

i (37)

Hi ← {2(XR
i )Tdiag{λ(ξi)}(XR

i ) +Mq((ΣR)−1)}−1 (38)

S ← S +GiHiG
T
i (39)

s← s+GiHi(X
R
i )T (yi − .5) (40)

Σq(β,uG;ξ) ←
{

2(CG)Tdiag{λ(ξi)}CG +

[
σ−2
β 0
0 blockdiag(µq(1/σ2

u`)
IqG` )

]
− S

}−1

(41)

µq(β,uG;ξ) ← µq(1/σ2
ε )Σq(β,uG)

{
(CG)T (y − .5)− s

}
(42)

Σq(uRi ) ← Hi +HiG
T
i Σq(β,uG)GiHi (43)

µq(uRi ) ← Hi

{
µq(1/σ2

ε )(X
R
i )T (yi − .5)−GT

i µq(β,uG)

}
(44)

ξ2 ← diagonal
{
CG(Σq(β,u;ξ) + µq(β,u;ξ)µ

T
q(β,u,ξ))(C

G)T
}

(45)

(46)
ξ2
i ← 2diagonal

(
CG
(
−Σq(β,u;ξ)GiHi + µq(β,u;ξ)µ

T
q(β,u,ξ)

)
(XR

i )T
)

+ diagonal
(
XR
i

(
Σq(uRi ;ξ) + µq(ui;ξ)µ

T
q(ui,ξ)

)
(XR

i

)
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Bq(aRr ) ← ν
(
Mq((ΣR)−1)

)
rr

+ A−2
Rr (47)

µq(1/aRr ) ← .5(ν + qR)/Bq(aRr ) (48)

Bq(ΣR) ←
m∑
i=1

(
µq(uRi )µ

T
q(uRi ) + Σq(uRi )

)
+ 2νdiag

(
µq(1/aR1 ), . . . , µq(1/aR

qR
)

)
(49)

Mq((ΣR)−1) ← (ν +m+ qR − 1)B−1
q(ΣR)

(50)

µq(1/au`)) ← 1/{µq(1/σ2
u`)

+ A−2
u` } (51)

µq(1/σ2
u`)
← qG` + 1

2µq(1/au`′ξ) +
∣∣∣µq(µG` )

∣∣∣2 + tr(Σq(uG` ;ξ))
(52)

A.3.3 Algorithm 2

With the updates above we can now state Algorithm 2.

1: repeat
2: S ← 0
3: s← 0
4: for i = 1 . . .m do
5: Update Gi (37), Update Hi (38)
6: Update S (39), Update s (40)
7: end for
8: Update Σq(β,uG;ξ) (41, Update µ(q(β,uG;ξ) using (42)
9: for i = 1 . . .m do

10: Update Σq(uRi ;ξ) (43), Update µq(uRi ;ξ) (44)
11: end for
12: Update ξ2 (45)
13: for i = 1 . . .m do
14: Update ξ2

i (46)
15: end for
16: for r = 1, . . . , qR do
17: Update Bq(aRr ) (47), Update µq(1/aRr ) (48)
18: end for
19: Update Bq(ΣR) (49)
20: Update Mq(ΣR)−1 (50)
21: for ` = 1 . . . L do
22: Update µq(1/au`) (51), Update µq(1/σ2

u`)
(52)

23: end for
24: until convergence in p(y; q)
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A.4 Algorithm 3: Gaussian Outcome Matrix Factorization

In Algorithm 3 I show how to connect the Gaussian linear regression in Algorithm 1 with
a matrix factorization model. The model can be stated as:

yi,j ∼ Normal(xijβ + Zijγ +
∑
k

ui,kvj,k, σ
2
ε ) (53)

ui,k ∼ Normal(0, ρ2
k) (54)

vi,k ∼ Normal(0, τ 2
k ) (55)

β ∼ Normal(0, σ2
βIP ) (56)

γ ∼ Normal(0,ΣR) (57)

ΣR|aR1 , . . . , aRqR ∼ Inverse-Wishart(ν + qR − 1, 2νdiag(1/aR1 , . . . , 1/a
R
qR) (58)

aR1 . . . a
R
qR

ind.∼ Inverse-Gamma(.5, 1/A2
Rr) (59)

σ2
ε ∼ Inverse-Gamma(.5, 1/aε) (60)

aε ∼ Inverse-Gamma(.4, 1/A2
ε) (61)

where I have switched the notation of the random effect to γ to reserve u as one of the
latent factors.

In order to get the dimensionality selection effects of Automatic Relevance Determi-
nation we will point estimate the variances ρ2, τ 2 as explained below.

When notationally convenient I collect the latent factors u into a matrix U where
each row i contains the k factors for group i. We denote the row of matrix U contain the
latent factors of group i as Ui. V follows similarly.

A.4.1 Matrix Factorization Component

Following the computer science literature (Lim and Teh, 2007), I assume a factorization
over the latent factors:

q(U, V, β) ≈ q(U)q(V )q(β) (62)

=
I∏
i=1

q(Ui)
J∏
j=1

q(Vj)q(β, γ) (63)

Note that this is not a minimal product restriction on the variational parameters as either
q(U) or q(V ) could be combined with q(β, γ) but I separate them in order to keep the
treatment of the two modes symmetric.

The consequence of the factorization assumption is that the approximation is unable
to capture the posterior covariance between the latent factor matrices q(U) and q(V ). In
the true posterior these effects are going to be negatively correlated, and it indeed it is
exactly this feature which makes Gibbs sampling challenging. This hurts the accuracy
of the approximation and will in general cause the approximation to understate the vari-
ance. That said, this does not appear to substantially detract from the quality of the
approximation for the other parameters q(β).10

10Note that in practice I always include standard additive effects for the rows and columns of the
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Standard calculations lead to the following Gaussian forms of the approximate den-
sities:

q(Ui) = Normal(µq(Ui),Σq(Ui)) (64)

q(Vj) = Normal(µq(Vj),Σq(Vj)) (65)

q(β) = Normal(µq(β),Σ(q(β)) (66)

The posterior parameters of the approximation are updated as

Σq(Ui) =


1/τ 2

1 0 . . . 0
0 1/τ 2

2 . . . . . .
...

...
. . .

...
0 . . . . . . 1/τ 2

k

+

j∑
j=1

Σ(q(Vj) + µq(Vj)µ
T
q(Vj)

σ2
ε


−1

(67)

µq(Ui) = Σ(q(Ui)

(∑
n∈Ω

(
(yn − xnβ)µq(Vj(n))

σ2
ε

))
(68)

where Ω indicates the set of observations for which y is observed. The form of q(V )
following analogously. Although the form seems complicated at first, it is simply Bayesian
linear regression with two distinctions. First, we are now fitting the model to the residuals
(y−xβ) and second we have to include the covariance of the variational distribution when
calculating the cross products.

The variational distribution for β is even simpler as it corresponds directly to Bayesian
linear regression on the residuals

ỹij = yij − E[Ui]E[V T
j ] (69)

= yij − µq(Ui)µTq(Vj) (70)

Note that this has a tractable form due to the factorization assumption that defines
E[Ui, V

T
j ] = E[Ui]E[V T

j ].

A.4.2 Optimal Densities

Most of the optimal densities follow by replacing the outcome y with a working response.
In addition the following three updates are required for algorithm 3.

τ 2
k =

1

I − 1

I∑
i=1

(
(Σq(Ui))kk + (µq(Ui))

Tµq(Ui)
)

(71)

ρ2
k =

1

J − 1

J∑
j=1

(
(Σq(Vj))kk + (µq(Vj))

Tµq(Vj)
)

(72)

The update for the error rate parameter is substantially more complicated due to
the inclusion of the latent factors. It is useful to define it in several pieces, using ηCβ

matrix into the components β, γ. This has the benefit of weakening the dependence on the factorization
assumption.
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to indicate the fitted portion of the linear predictor due to the observed parameters and
additive effects and ηUV T to indicate the fitted portion due to the latent factors.

η(Cβ) = y − CGµq(β,γG) −

XR
1 µq(γR1 )

...
XR
mµq(γRm)


η

(UV )
i,j = µq(Ui)µ

T
q(Vj)

Also define a term ζ to capture a portion of the regression context.

ζCβ = tr{(CG)TCGΣq(β,γG)}+
m∑
i=1

tr{(XR
i )TXR

i Σq(γRi )} − 2µ−1
q(1/σ2

ε )

m∑
i=1

tr
(
GiHiG

T
i Σq(β,γG)

)
We also define a term to capture a piece from the matrix factorization component. Here
we double index y as though it is arranged into a matrix.

ζUV T =
∑
i,j∈Ω

yi,j − 2yi,jµq(Ui)µ
T
q(Vj)

+ tr
[(

Σq(Ui) + µq(Ui)µ
T
q(Ui)

) (
Σq(Vj) + µq(Vj)µ

T
q(Vj)

)]
The trace term can be efficiently computed because both matrices are symmetric and thus
the trace is the sum over their elementwise product:

tr(AB) =
∑
ij

AijBij

With these components together we can right the update as

Bq(σ2
ε ) ← ζUV T − 2

(∑
i,j∈Ω

(yij − η(UV T )
ij )η

(CB)
ij

)
+
∣∣∣η(Cβ)
ij

∣∣∣2 + ζCβ (73)

A.4.3 Algorithm 3

Updates after yworking should use the working version of the response in place of y.

1: repeat
2: S ← 0
3: s← 0
4: yworking ← y − η(UV )

5: for i = 1 . . .m do
6: Update Gi (14), Update Hi (15)
7: Update S (16), Update s (17)
8: end for
9: Update Σq(β,γG) (18, Update µ(q(β,γG) using (19)

10: for i = 1 . . .m do
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11: Update Σq(γRi ) (20), Update µq(γRi ) (21)
12: end for
13: Update yworking ← y − η(Cβ)

14: for i = 1 . . . I do
15: Update Σq(Ui) (67)
16: Update µq(Ui) (68)
17: end for
18: for j = 1 . . . J do
19: Update Σq(Vj) (67)
20: Update µq(Vj) (68)
21: end for
22: Update τ 2 (71)
23: Update ρ2 (72)
24: yworking ← y
25: Update Bq(σ2

ε ) (73)
26: Update µq(1/σ2

ε ) (23)
27: Update µq(1/aε) (24)
28: for r = 1, . . . , qR do
29: Update Bq(aRr ) (25), Update µq(1/aRr ) (26)
30: end for
31: Update Bq(ΣR) (27)
32: Update Mq(ΣR)−1 (28)
33: for ` = 1 . . . L do
34: Update µq(1/aγ`) (29), Update µq(1/σ2

γ`)
(30)

35: end for
36: until convergence in p(y; q)

A.4.4 Initialization Methods

Due to the multimodality in the posterior distribution it is helpful to initialize the vari-
ational algorithm carefully. Here and in Algorithm 4-6, I initialize by updating the coef-
ficients β, γ and then using the spectral algorithm of Nakajima et al. (2013) to estimate
q(U)q(V ) from y − E[Xβ + Zγ].

In short, the Nakajima et al. (2013) approach involves using a truncated singular
value decomposition to estimate the parameters of the variational posterior. In the case
of imbalanced panels this requires filling in the missing elements of the matrix. Using Ω
to denote the observed indices, I use a simple mean imputation:

Y!Ω ← E[YΩ] (74)

This is the same procedure as used in Chatterjee (2012) which provides a theoretical
justification for the choice. An alternative strategy would be to impute the values using
an algorithm such as Soft-Impute (Mazumder, Hastie and Tibshirani, 2010) which is
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itself based on a singular value decomposition. Extensive study of the properties of these
estimators is left to future work.

The exact version of the algorithm used is in Nakajima et al. (2012) with supporting
details in Nakajima and Sugiyama (2011); Nakajima et al. (2013). Further details will be
filled in here as well in future drafts.

A.4.5 Dimensionality Reduction

In algorithms 3-6 I use Automatic Relevance Determination to choose the dimensionality
of the latent factors. This involves point estimating the factor variances ρ and τ which
produces a model-induced regularization effect (see for example Nakajima et al. (2013) on
the origins of this effect). In practice this means estimating the model with the maximal
number of latent factors and dropping them out as their variance parameters go to zero.

An added benefit of using the spectral initialization is that we get an initial estimate
of the dimensionality which can help defray computational costs. Then as the variances
fall below a certain threshold they are dropped from the model.

A.5 Algorithm 4: Logistic Regression with Matrix Factorization

A.5.1 Preliminaries

The model can be given as:

yi,j ∼ Bernoulli(σ(η)) (75)

η = xijβ + Zijγ +
∑
k

ui,kvj,k (76)

ui,k ∼ Normal(0, ρ2
k) (77)

vi,k ∼ Normal(0, τ 2
k ) (78)

β ∼ Normal(0, σ2
βIP ) (79)

γ ∼ Normal(0,ΣR) (80)

ΣR|aR1 , . . . , aRqR ∼ Inverse-Wishart(ν + qR − 1, 2νdiag(1/aR1 , . . . , 1/a
R
qR) (81)

aR1 . . . a
R
qR

ind.∼ Inverse-Gamma(.5, 1/A2
Rr) (82)

The logistic regression with matrix factorization problem is slightly more complicated
than the Gaussian regression because it is slightly more difficult to define the working
response. Using the formulation in Equation 33 we can show the working response for
the estimation of q(β, γ) is y/2− 2y2η∗λ(ξ) where η∗ is the portion of the linear predictor
to be removed.

A.5.2 Optimal Densities

All the optimal densities remain in the same families as given in Algorithms 2 and 3.
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Gi ← 2(CG
i )Tdiag{λ(ξi)}XR

i (83)

Hi ← {2(XR
i )Tdiag{λ(ξi)}(XR

i ) +Mq((ΣR)−1)}−1 (84)

S ← S +GiHiG
T
i (85)

s← s+GiHi(X
R
i )T (yworking) (86)

Σq(β,γG;ξ) ←
{

2(CG)Tdiag{λ(ξi)}CG +

[
σ−2
β 0
0 blockdiag(µq(1/σ2

γ`)
IqG` )

]
− S

}−1

(87)

µq(β,γG;ξ) ← µq(1/σ2
ε )Σq(β,γG)

{
(CG)T (yworking)− s

}
(88)

Σq(γRi ) ← Hi +HiG
T
i Σq(β,γG)GiHi (89)

µq(γRi ) ← Hi

{
(XR

i )T (yworking)−GT
i µq(β,γG)

}
(90)

Σq(Ui) ←


1/τ 2

1 0 . . . 0
0 1/τ 2

2 . . . . . .
...

...
. . .

...
0 . . . . . . 1/τ 2

k

+

j∑
j=1

Σ(q(Vj) + µq(Vj)µ
T
q(Vj)

λ(ξ)


−1

(91)

µq(Ui) ← Σ(q(Ui)

(∑
n∈Ω

(
(yworking − xnβ)µq(Vj(n))

λ(ξ)

))
(92)

ξ2 ← diagonal
{
E[(Cβ + UV T )(Cβ + UV T )T ]

}
(93)

Bq(aRr ) ← ν
(
Mq((ΣR)−1)

)
rr

+ A−2
Rr (94)

µq(1/aRr ) ← .5(ν + qR)/Bq(aRr ) (95)

Bq(ΣR) ←
m∑
i=1

(
µq(uRi )µ

T
q(uRi ) + Σq(uRi )

)
+ 2νdiag

(
µq(1/aR1 ), . . . , µq(1/aR

qR
)

)
(96)

Mq((ΣR)−1) ← (ν +m+ qR − 1)B−1
q(ΣR)

(97)

µq(1/au`)) ← 1/{µq(1/σ2
u`)

+ A−2
u` } (98)

µq(1/σ2
u`)
← qG` + 1

2µq(1/au`′ξ) +
∣∣∣µq(µG` )

∣∣∣2 + tr(Σq(uG` ;ξ))
(99)

τ 2
k =

1

I − 1

I∑
i=1

(
(Σq(Ui))kk + (µq(Ui))

Tµq(Ui)
)

(100)

ρ2
k =

1

J − 1

J∑
j=1

(
(Σq(Vj))kk + (µq(Vj))

Tµq(Vj)
)

(101)

A.5.3 Algorithm 4

With the statements above we can now give Algorithm 4
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1: repeat
2: S ← 0
3: s← 0
4: Update yworking ← y/2− 2y2(µq(U)µ

T
q(V ))λ(ξ)

5: for i = 1 . . .m do
6: Update Gi (83), Update Hi (84)
7: Update S (85), Update s (86)
8: end for
9: Update Σq(β,γG;ξ) (87, Update µ(q(β,γG;ξ) using (88)

10: for i = 1 . . .m do
11: Update Σq(γRi ;ξ) (89), Update µq(γRi ;ξ) (90)
12: end for
13: Update yworking ← y/2− 2y2(Cµq(β,γ))λ(ξ)
14: for i = 1 . . . I do
15: Update Σq(Ui) (67)
16: Update µq(Ui) (68)
17: end for
18: for j = 1 . . . J do
19: Update Σq(Vj) (67)
20: Update µq(Vj) (68)
21: end for
22: Update τ 2 (71)
23: Update ρ2 (72)
24: yworking ← y
25: Update ξ2 (93)
26: for r = 1, . . . , qR do
27: Update Bq(aRr ) (94), Update µq(1/aRr ) (95)
28: end for
29: Update Bq(ΣR) (96)
30: Update Mq(ΣR)−1 (97)
31: for ` = 1 . . . L do
32: Update µq(1/au`) (98), Update µq(1/σ2

u`)
(99)

33: end for
34: until convergence in p(y; q)

A.6 Algorithm 5: Gaussian Tensor Factorization

Algorithms 3 covers the case of two types of interactive latent factors. This addresses
the case when the data can be arranged into a matrix and adds a matrix factorization to
the linear predictor. When more than two types of interactive latent factors are present
the data can be arranged into a tensor and a tensor decomposition can be added to the
linear predictor(Kolda and Bader, 2009). The multilinear form presented in this article
corresponds to a type of tensor decomposition called the CANDECOMP/PARAFAC (CP)
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tensor factorization (Kolda and Bader, 2009; Hoff, 2011a; Zhao, Zhang and Cichocki,
2014).

A.6.1 Notation

Because this model allows for tensors with an arbitrary number of modes it will be useful to
change notation. Denote the tensor containing the outcome variable as Y . The interactive
latent factors will form a tensor of equivalent dimensions which collects their contribution
to the linear predictor. Denote this latent tensor U . For each mode of the tensor indexed
by m ∈ 1 . . .M there exists a factor matrix U (m) ∈ R(nm×K) where nm is the dimension of
the m-th mode and K is the dimensionality of the latent factor. A column in this matrix
is denoted u

(m)
k . The latent tensor U can be formed by taking the sum over the kroeneker

product of the modes such that

U =
K∑
k=1

u
(1)
k ⊗ . . .⊗ u

(M)
k (102)

In general we will work with the collection of matrix representations but it will often be
simpler to index terms form the latent tensor.

Observed covariates in the form of X, Z and C are left as capital letters with the
understanding that when multiply indexed they still return a vector as in the standard
regression case.

A.6.2 Model

Using the new notation we can state the model as

yi,j,...,r ∼ Normal(Xi,j,...,rβ + Zi,j,...,rγ + Ui,j,...,r, σ2
ε ) (103)

u
(m)
k

ind.∼ Normal(0, τ 2
m,k) (104)

β ∼ Normal(0, σ2
βIP ) (105)

γ ∼ Normal(0,ΣR) (106)

ΣR|aR1 , . . . , aRqR ∼ Inverse-Wishart(ν + qR − 1, 2νdiag(1/aR1 , . . . , 1/a
R
qR) (107)

aR1 . . . a
R
qR

ind.∼ Inverse-Gamma(.5, 1/A2
Rr) (108)

σ2
ε ∼ Inverse-Gamma(.5, 1/aε) (109)

aε ∼ Inverse-Gamma(.4, 1/A2
ε) (110)

where I emphasize that the model in Equation 104 uses a shared variance for a given
mode and factor dimension thus making it an analogous to the matrix case. τ 2 is now a
matrix which collects these variances for each mode (along the rows) and each dimension
of the latent factor (along the columns).

A.6.3 Variational Approximation

Again we factorize the density over the modes and the

q
(
β, U (1) . . . U (M)

)
≈ q(β)

∏
i

q(U (1)) . . . q(U (M)) (111)
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with induced factorization further factorizing the posterior over the rows of the factor
matrices (Zhao, Zhang and Cichocki, 2014). Due to the conjugacy in the model these
rows are again multivariate Gaussian distributions.

A.6.4 Optimal Densities

In algorithms 3 and 4 the latent factors for mode 1 were updated by a Bayesian linear
regression using the mode 2 factors as covariates. Because of the expectations of the
quadratic terms these forms also include the covariance of the variational posterior over
the mode 2 factors. Thus to rewrite Equations 67 and 68 in the current notation. To do
so we denote u

(m)
i to be the i’th row of the factor matrix U (m)

Σ
q(U

(1)
i )
←




1/τ 2
1,1 0 . . . 0

0 1/τ 2
1,2 . . . . . .

...
...

. . .
...

0 . . . . . . 1/τ 2
1,k

+

n2∑
i=1

Σ(q(U(2)))i + µ
q(U

(2)
i )
µT
q(U

(2)
i )

σ2
ε


−1

(112)

µ
q(U

(1)
i )
← Σ

(q(U
(1)
i )

∑
n∈Ω

(yn − xnβ)µ
q(U

(2)
i(n)

)

σ2
ε

 (113)

Notice the numerator in Equation 112 contains the terms related to the second mode of the
tensor. In the general M -mode tensor case this simply becomes an elementwise product.
Denote the elementwise product of a collection of matrices as �

(m)
where m denotes the

index we are taking the elementwise product over.

Σ
q(U

(1)
i )
←




1/τ 2
1,1 0 . . . 0

0 1/τ 2
1,2 . . . . . .

...
...

. . .
...

0 . . . . . . 1/τ 2
1,k

+

n2∑
i=1

�
(m)

(
Σ(q(U(m)))i + µ

q(U
(m)
i )

µT
q(U

(m)
i )

)
σ2
ε


−1

(114)

µ
q(U

(1)
i )
← Σ

q(U
(1)
i )

∑
n∈Ω

(yn − xnβ)µ
q(U

(2)
i(n)

)

muq(σ2
ε )

 (115)

As with the matrix factorization model the noise parameter requires some care. Define
ζCβ as before and introduce the more general form ζU as

ζU =
∑
i∈Ω

|Yi|2 − 2YiUi + �
(m)

(
Σ(q(U(m)))i + µ

q(U
(m)
i )

µT
q(U

(m)
i )

)
(116)

This leads to the update

Bq(σ2
ε ) ← ζU − 2

(∑
i∈Ω

(Yi − Ui)Ciβ

)
+ |Ciβ|2 + ζCβ (117)
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A.6.5 Algorithm 5

With these updates in hand we can present algorithm 5.

1: repeat
2: S ← 0
3: s← 0
4: yworking ← YΩ − UΩ

5: for i = 1 . . .m do
6: Update Gi (14), Update Hi (15)
7: Update S (16), Update s (17)
8: end for
9: Update Σq(β,γG) (18, Update µ(q(β,γG) using (19)

10: for i = 1 . . .m do
11: Update Σq(γRi ) (20), Update µq(γRi ) (21)
12: end for
13: Update yworking ← YΩ − CΩβ
14: for m = 1 . . .M do
15: for i = 1 . . . Nm do
16: Update Σ

q(U
(m)
i )

(114)

17: Update µ
q(U

(m)
i )

(115)

18: Update τ 2
i,k (71)

19: end for
20: end for
21: yworking ← y
22: Update Bq(σ2

ε ) (117)
23: Update µq(1/σ2

ε ) (23)
24: Update µq(1/aε) (24)
25: for r = 1, . . . , qR do
26: Update Bq(aRr ) (25), Update µq(1/aRr ) (26)
27: end for
28: Update Bq(ΣR) (27)
29: Update Mq(ΣR)−1 (28)
30: for ` = 1 . . . L do
31: Update µq(1/au`) (29), Update µq(1/σ2

u`)
(30)

32: end for
33: until convergence in p(y; q)

A.6.6 Initialization

While Nakajima and Sugiyama (2011) provides a direct connection between matrix fac-
torizations and variational bayes there is no such clean theoretical result for the tensor
case. Indeed while matrix factorizations are often easy to compute by the singular value
decomposition, low-rank tensor decompositions need not even exist and commonly used
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algorithms for finding them often do not have convergence guarantees (Kolda and Bader,
2009). This is an active area of research that I don’t delve into extensively here (but see
Hoff (2011a); Anandkumar, Ge and Janzamin (2014); Suzuki (2014)).

In order to initialize the model I perform the Nakajima et al. (2012) estimator on
the matricization of each mode of the tensor. Matricization involves unfolding the tensor
to create a matrix in which the rows represent one mode of the tensor and the columns
represent all other modes (Kolda and Bader, 2009). The spectral estimator can be applied
to each matricization and the latent factors for the preserved dimension are then used as
initializations for the tensor factorization algorithm. This works well in practice although
further study is needed.

A.6.7 Computation

Care must be taken to avoid memory issues with tensor latent variables. Often the tensors
are very sparsely observed and thus the complete tensor should not be explicitly formed
when at all possible.

A.7 Algorithm 6: Logistic Regression Tensor Factorization

Algorithm 6 provides the tensor variant of Algorithm 4. It provides no unique challenges
beyond those in moving from Algorithm 3 to Algorithm 5.

A.7.1 Model

We work with the model

Y ∼ Bernoulli(σ(η)) (118)

η = Xβ + Zγ + U (119)

u
(m)
k

ind.∼ Normal(0, τ 2
m,k) (120)

β ∼ Normal(0, σ2
βIP ) (121)

γ ∼ Normal(0,ΣR) (122)

ΣR|aR1 , . . . , aRqR ∼ Inverse-Wishart(ν + qR − 1, 2νdiag(1/aR1 , . . . , 1/a
R
qR) (123)

aR1 . . . a
R
qR

ind.∼ Inverse-Gamma(.5, 1/A2
Rr) (124)

A.7.2 Optimal Densities

Again we denote the elementwise product of a collection of matrices as �
(m)

where m

denotes the index we are taking the elementwise product over. Then the updates for the
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latent factor matrices are

Σ
q(U

(1)
i )
←




1/τ 2
1,1 0 . . . 0

0 1/τ 2
1,2 . . . . . .

...
...

. . .
...

0 . . . . . . 1/τ 2
1,k

+

n2∑
i=1

�
(m)

(
Σ(q(U(m)))i + µ

q(U
(m)
i )

µT
q(U

(m)
i )

)
λ(ξ)


−1

(125)

µ
q(U

(1)
i )
← Σ

q(U
(1)
i )

∑
n∈Ω

(yn − xnβ)µ
q(U

(2)
i(n)

)

λ(ξ)

 (126)

where y is replaced with yworking. I’ve omitted the “working” subscript here to avoid
confusion with the observation index.

The update for the the variational parameter ξ becomes

ξ2 ← diagonalE[(Cβ + U)(Cβ + U)T ] (127)

A.7.3 Algorithm 6

With the above updates we can specify the algorithm as

1: repeat
2: S ← 0
3: s← 0
4: Update yworking ← y/2− 2y2Uλ(ξ)
5: for i = 1 . . .m do
6: Update Gi (83), Update Hi (84)
7: Update S (85), Update s (86)
8: end for
9: Update Σq(β,γG;ξ) (87, Update µ(q(β,γG;ξ) using (88)

10: for i = 1 . . .m do
11: Update Σq(γRi ;ξ) (89), Update µq(γRi ;ξ) (90)
12: end for
13: Update yworking ← y/2− 2y2(Cβ)λ(ξ)
14: for m = 1 . . .M do
15: for i = 1 . . . Nm do
16: Update Σ

q(U
(m)
i )

(125)

17: Update µ
q(U

(m)
i )

(126)

18: Update τ 2
i,k (71)

19: end for
20: end for
21: yworking ← y
22: Update ξ2 (127)
23: for r = 1, . . . , qR do
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24: Update Bq(aRr ) (94), Update µq(1/aRr ) (95)
25: end for
26: Update Bq(ΣR) (96)
27: Update Mq(ΣR)−1 (97)
28: for ` = 1 . . . L do
29: Update µq(1/au`) (98), Update µq(1/σ2

u`)
(99)

30: end for
31: until convergence in p(y; q)

A.7.4 Computational Notes

As with the Gaussian tensor factorization case the complete tensor may be very sparsely
observed. However in the binary case it may also be that instances of a y = 1 are very
rare. This will often occur with various types of longitudinal network structure. In this
setting substantial computational gains can be realized by using a case control likelihood
as suggested in (Raftery et al., 2012).
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B Alternative Approaches
In this appendix I briefly overview several approaches to modeling heterogeneity that are
not encompassed by the framework presented here. In each case I have highlighted the
contrast with the framework that I have provided in the main text.

Exponential Random Graph Models (ERGMS) ERGMs provide an alternative ap-
proach to modeling networks. Here we forego the conditional independence assumption
and instead model the entire graph as a single draw from a joint (Gibbs) distribution
(Cranmer and Desmarais, 2011). ERGMs are notoriously difficult to estimate and re-
quire careful specification of the sufficient statistics of the graph. They also only apply to
graphs with unweighted edges. However, in settings where the conditional independence
is untenable they are effectively the only option.

Survival Analysis Semiparametric approaches to survival analysis, such as the Cox
model are essentially single mode models with varying intercepts (where time is the mode)
(Box-Steffensmeier and Jones, 2004). The spline based method of Beck, Katz and Tucker
(1998) for analyzing binary duration data can be placed into the GMRF framework. see
also Jackman (1998) for relevant connections.

Binary Treatment Causal Inference Recent work on causal inference in time-series
and time-series cross sectional data addresses related problems in the potential outcomes
framework (Blackwell, 2013; Blackwell and Glynn, 2013; Xu, 2014). Additional work pro-
vides the infrastructure for causal inference under interference between units or with con-
tagion (Bowers, Fredrickson and Panagopoulos, 2013; Ogburn and VanderWeele, 2014).
Imai and Kim (2012) illuminate the connection between difference-in-differences design
and two-way weighted fixed effects estimators.

Mixture Models In the models described in this paper, the groups within a mode are
assumed to be observed. When even this information is unavailable mixture models can
be used to model the heterogeneity. Kyung, Gill and Casella (2010, 2011) use a Dirichlet
process random-effects model to allow varying intercepts over unknown groupings in the
data. Park (2012) provides a model for time-series cross-sectional data where which uses
a non-recurrent Hidden Markov Model for parameters. This treats time as a mode where
all members of a group are temporally contiguous but the breakpoints between groups
are estimated by the model. Imai and Tingley (2012) use a finite mixture of GLMs
model which allow each data point to be drawn from an a priori fixed number of possible
regression models. While presented in the context of theory testing, we can motivate the
same infrastructure as a way to model a single model with unknown group membership
with each group represented by one of the regressions. And extended to the infinite
mixture model is provided by the Dirichlet Process-GLM framework (Hannah, Blei and
Powell, 2011). Finally recent econometric work has focused on learning unknown group
membership in the interactive fixed effects framework (Ando and Bai, 2013).

Flexible Regressions A separate approach to modeling heterogeneity avoids explicit
models for the heterogeneity and simply uses an extremely flexible regression (Wahba,
1990; Gu, 2013). By allowing effects to be highly non-linear and context dependent we
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can side step the issue of explicitly producing models of the models. In the international
relations context this was Beck, King and Zeng (2000) argue for the use of neural networks
for estimating these types of functions. Hainmueller and Hazlett (2014) present a more
interpretable approach based on Kernel Regularized Least Squares. Both methods face
the challenge of interpreting the resulting models which is complicated by the non-linear
forms.

Nonparametric Estimation For the particular case of network data there has been in-
creasing interest in nonparametric approaches to estimation.11 Chatterjee (2012) provides
a consistent estimator based on a truncated singular value decomposition that applies to
a wide range of models including many of the two mode network models. Airoldi, Costa
and Chan (2013); Chan and Airoldi (2014); Yang, Han and Airoldi (2014) design a con-
sistent estimator that uses a histogram of stochastic block models. These approaches are
extremely new but they point to approaches to nonparametric estimation of particular
versions of the model. The statistical characterization of graphons also provides insights
to the extent to which the latent effects models are identifiable (Bickel and Chen, 2009;
Bickel, Chen and Levina, 2011).

11This literature makes use of the a statistical function called a graphon. Graphons are the limiting
objects that describe random network objects. Define a graph with N nodes which are each given a latent
variable ui ∼Uniform(0, 1) for all i ∈ {1 . . . N}. Two vertices are connected with probability w(ui, uj)
where the function w is the graphon. That is, it is a function which maps [0, 1]2 → [0, 1]. This describes
a wide class of models over exchangeable graphs (Lloyd et al., 2013; Orbanz and Roy, 2013). Interest is
in the circumstances in which we can non-parametrically estimate this function and the circumstances in
which we can prove consistency of the resulting estimator (Airoldi, Costa and Chan, 2013).
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C Two-Way Fixed Effects and Latent Factor Regres-

sion
The goal of this appendix is to illuminate the connection between the Latent Factor Re-
gression framework and two-way fixed effects. In doing so I also address the three related
questions: ‘where is the variation coming from?’, ‘what is the counterfactual?’ and ‘what’s
the analogous experiment?’ In order to connect to the literature on causal inference I focus
on settings where the effect of interest is a binary treatment with other covariates serv-
ing as continuous pre-treatment confounders. However, I emphasize that the framework
naturally extends to non-binary effects. I also only consider varying intercepts although
the framework naturally extends to varying coefficients.

C.1 Two-way Fixed Effects

For concreteness and without loss of generality, I consider the case of data organized in
a time-series cross-sectional format with t ∈ {1 . . . T} years and c ∈ {1 . . . C} countries.
The two-way fixed effects estimator considers a model of the form:

yc,t = xc,tβ + αc + γt + ε (128)

where α and γ are vectors of country and time specific intercepts respectively, xc,t are the
covariates for unit c at time t and ε is random Gaussian noise.

Arranging the outcome y into a C by T matrix it is clear that the fixed effects α and
γ are estimated using the rows and columns of the matrix respectively. The unmeasured
confounding in the data is then controlled through the additive combination of the row and
column effect. What the two-way fixed effects setup implicitly assumes is that the effect
of country c is constant across all time periods and analogously the effect of time period
t is the same across all countries. We can give this an economic interpretation by saying
that there are global shocks to the system represented by γt which affect all countries in
the same way, and different base levels of the outcome for each country measured by αc.

C.2 Latent Factor Regressions

The analogous latent factor regression model is:

yc,t = xc,tβ + αc + γt +
K∑
k

uc,kvt,k + ε (129)

where uc,k is an element of factor matrix U having dimension C×K (with V analogously
defined). The rank of the approximation, K, can be estimated or fixed by the analyst.

The two-fixed effects estimator is a special case of the latent factor regression where
k = 0 and thus is directly nested within the framework proposed in the main paper. The
latent factor matrices U and V represent deviations from the additive form of the model
and thus under the interpretation above can be seen as capturing the degree to which
common shocks to the system elicit varying responses from countries.
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It is helpful to define a third model which serves as an illustrative limiting case which
I call the joint fixed effects model. This formulation can be given as,

yc,t = xc,tβ + φc,t + ε (130)

Φ is a matrix where each cell φc,t represents a fixed effect for that country-year combi-
nation. Clearly the model in Equation 130 is only identified if the data contain more
than one observation for each pair of indices. Whereas the two-way fixed effects estimator
of Equation 128 uses the entire row and entire column to estimate the intercepts for an
observation, the joint fixed effects estimator uses only the information within the cell.

The latent factor regression model provides an intermediate point between the two
fixed effects models. The degree of the tradeoff is controlled by the rank of the latent
factor model, K. When K = 0 the model recovers exactly the two-fixed effects model.
When K =min(C, T ) the model recovers exactly the joint fixed effects model.12 The
solution (α, γ, u, v) for a fixed value K is the best rank K approximation to the joint
parameter matrix Φ.13

Thus, even in cases where we have replications at the cell (e.g. country/year) level
the latent factor approach is an attractive alternative to the joint effects model because if
we believe there is any structure in the matrix of parameters Φ (e.g. the effect for country
c at time t has any information to offer us on the effect for country c at time t− 1) then
the latent factor regression framework provides us with a favorable bias-variance tradeoff.
This is because structure of the matrix allows the model to bring additional observations
beyond the replications at the cell level.14

Having addressed the basic infrastructure, I now consider direct answers to a few
common questions.

C.3 Connections to Causal Inference

A natural question for any new method is ‘what is this doing?’ That is, we want to be
able to articulate which treated units are being compared to which control units. This is
closely related to the question of what variation is being removed from the data by the
procedure. Before moving into the latent factor regression framework I briefly explain
what information is being removed in the two-way fixed effects framework as well as the
joint fixed effects.

Again it is helpful to arrange the data Y into a C by T matrix. In two-way fixed
effects we are removing from each cell variation which is common to the row and variation
which is common to the column. The variation removed is a function of three averages:

12The proof of this follows immediately from the singular value decomposition which guarantees the
existence of the decomposition as well as the exact reconstruction of the full matrix (Eckart and Young,
1936).

13This is the best approximation in terms of the Frobenius norm of the matrix as again guaranteed by
appeal to the singular value decomposition. When estimating the rank using the ARD priors as used in
the paper this corresponds exactly to the best approximation of the joint parameter matrix under the
nuclear norm, a common convex relaxation of the rank selection problem (Fithian and Mazumder, 2013).

14The bias is determined by the degree to which Φ cannot be captured by the low-rank structure and
the variance improvement comes as a result of using additional observations in estimating φc,t as αc +
γt +

∑
k uc,kvc,k. Clearly for a non-random matrix Φ the bias decreases in the rank of the approximation.
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the average of all observations in the same row (country), the average of all observations
in the same column (time) and the average of all remaining observations (Imai and Kim,
2012).15

In the joint fixed effects estimator we consider only a single cell of the matrix when
removing variation. Again if we observe only a single observation per country-time com-
bination this is unidentified, having a single free parameter for each observation. In cases
where we have replication at this level, such as in the ‘Dirty Pool’ example (Green, Kim
and Yoon, 2001), we are simply subtracting off the mean of all observations within that
cell. They key difference here is that the two-way fixed effects estimator uses data from
every country and every time period in constructing each counterfactual, whereas the
joint estimator uses only the country and year for that cell.

In the latent factor regression, we consider the entire row and column of the matrix (as
in the two-fixed effects) but each observation is not weighted equally. Instead the model
implicitly assigns higher weight to countries (or years) which have trends in the dependent
variable which are similar to the country (year) of the cell. I make this comparison more
precise below by first considering which units are stochastically equivalent under the model
and then by giving an augmented data interpretation of the estimator.

C.3.1 Stochastic equivalence

An intuitive way to think of how the latent factor framework models dependence is by con-
sidering the components of the inner product term U and V as forming a K dimensional
vector space in which both countries and years are projected. Countries which have simi-
lar projections uc in the space are approximately stochastically equivalent and respond to
shocks in a similar fashion. This provides us with insight into where the variation comes
from. We are implicitly comparing a country-time unit with a country-time unit having
a similar projection into the K dimensional space. This produces a continuous weighting
over units in computing the counterfactuals in a potential outcomes framework. In the
matching framework, this continuous weighting can be seen as analogous to synthetic con-
trol methods which matches treated units to a reweighted collection of controls (Abadie,
Diamond and Hainmueller, 2010).16

Note that the appeal here to the approximate stochastic equivalence of two units
sharing similar values of the continuous factors is in principle no different from approx-
imate stochastic equivalence of two units with similar pre-treatment covariates. That
is, when we control for a series of (non-categorical) observed covariates we are invoking
an assumption of approximate stochastic equivalence of two units with similar covariate
profiles.

A further advantage of the low-rank framework is that two countries can be similar
along one dimension but different along another. Put another way, there can be a type of
global shock for which two countries can have a similar response, but a different type of

15The third term is necessary to adjust for the fact that we are adjusting the data based on two margins
rather than one. The full form of the two-way fixed effects as an adjusted matching estimator is given
with proof as Proposition 4 of Imai and Kim (2012).

16The nature of this correspondence is developed in Xu (2014) with reference to the interactive fixed
effects formulation of (Bai, 2009).
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global shock for which their responses will be different. Mathematically this is represented
by ui,k ≈ uj,k for k = i but not for k 6= i.17 This provides a substantially more flexible
framework for modeling heterogeneous units than a model assuming units must be alike
on all dimensions.

C.3.2 Interpretations as OLS on augmented data

Part of the reason simple additive fixed effects are so easy to understand is that we can
give a representation of the model as a simpler procedure on an augmented dataset. The
“least squares dummy variable” method can be written by using OLS on a transformed
datasets formed by subtracting off the mean by group.

Using the results in Bai (2009), we can give a a similar interpretation for the latent
factor regression as OLS on augmented data. Here we consider the special case of latent
factor regression where the latent factors are given no priors which is simply the limiting
special case of uninformative priors.

Start by defining the projection matrices:

MV = IT − V ′V/T (131)

MU = IC − U ′U ′/C (132)

then writing the model as:

Y = β1X
1 + · · ·+ βpX

p + UV ′ + ε (133)

where we have simply absorbed the additive fixed effects into the factor matrices.
Then the left multiplying by MV and right multiplying by MU we get

MV YMU = β1(MVX
1MU) + · · ·+ βp(MVX

pMU) +MV εMU (134)

This leads to the following least squares estimator under a given factor structure,

β̂ =

tr[MUX
1′MVX

1] . . . tr[MUX
1′MVX

p]
...

...
...

tr[MUX
p′MVX

1] . . . tr[MUX
p′MVX

p]

−1 tr[MUX
1′MV Y ]
...

tr[MUX
p′MV Y ]

 (135)

Thus the projection matrices MU and MV play a role analogous to projection matrices in
least square dummy variables estimation.

Bai (2009) also gives an instrumental variables interpretation that holds in this setting
as well. Define

C∑
c

Z ′cZc =

tr[MUX
1′MVX

1] . . . tr[MUX
1′MVX

p]
...

...
...

tr[MUX
p′MVX

1] . . . tr[MUX
p′MVX

p]

 (136)

The form of the estimator for beta is the IV estimator with Z ′c as the instrument.

17For example, imagine a model rank K=2. Let us suppose that the two factors capture distinct
economic shocks such as a sharp increase in energy prices (k=1) and a new technological development
in a high tech sector (k=2). Two countries may respond similarly to changes in energy prices and thus
ui,1 ≈ uj,1 but respond very differently to technological developments ui,2 6= uj,2. More generally when
the number of factors is relatively high this flexibility of the model allows every country to be distinct
while sharing qualities that substantially overlap.
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C.4 Connections to Existing Work

Here I briefly connect this work to several existing articles in order to further illuminate
the features of the model.

C.4.1 Grouped Fixed Effects

One way to deal with the problem of not observing multiple observations for each cell in
our data matrix Y is to aggregate over the rows (countries) to create groups. We can
then consider group-time specific fixed effects. These groups could be determineda priori
or estimated as in Bonhomme and Manresa (2012). If the group membership is estimated
under fixed K then the problem becomes a latent class (or finite mixture) model.

The latent factor regression framework and the mixture model framework differ in
the parametric assumption on the latent variable. For the mixture model case the la-
tent variable is categorical whereas in the latent factor regression it is continuous. The
grouped fixed effects model has the distinct advantage that the latent variable is natu-
rally interpretable as a partition over units. However, assuming that the latent variable
is categorical is substantially less general than the latent factor framework as members
of the same group are assumed to be exactly stochastically equivalent. This is a stronger
assumption which is unnecessary under the latent factor regression model.

C.4.2 Correlated Error Models

One way to view the latent factor regression framework is as inducing a low rank decom-
position of the error structure. Writing the regression model in matrix notation:

y = Xβ + ε (137)

ε ∼ N (0,Σ) (138)

the standard regression model assumes that Σ = σ2I. If instead we treat Σ as unstructured
we essentially observe a single draw from a multivariate Gaussian. Unfortunately MLE
is known to perform poorly for covariance estimation in this setting (James and Stein,
1961).

Numerous proposals have been made for estimating Σ under some particularly as-
sumptions, e.g. time-series models often assume that Σ−1 is tri-diagonal (West and Har-
rison, 1997). A particularly general case is given by spatial error models which assume
that the variance is rescaled by a known weights matrix, W . However the appropriate
form of W is often not known and reasonable choices can produce different results (Zhukov
and Stewart, 2013). The latent factor regression provides a quite general parametric form
for Σ.18

This interpretation of the model also makes clearer where the two way random effects
model will be insufficient. The two-way fixed effects model in Equation 128 is unable cor-
relation in the second moments of the data but not the third order moments. This notion
has the clearest expression in network data where properties of third order dependence
have been well characterized (Hoff, 2005; Wasserman and Faust, 1994). These intuitions
extend reasonably well to the spatial and cross-sectional case, where intuitively we can

18For more comparisons to various spatial models with Monte Carlo experiments see Pang (2014).
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think of third order dependence as capturing the consistency of the pairings A-B, B-C,
A-C where A,B,C are nodes in a networks or locations in a space.

This covariance structure can also be given a probabilistic interpretation akin to the
linear regressions product of univariate normals. Under a two-mode model the latent
factor regression provides a parameterization of a matrix normal distribution (Dawid,
1981; Hoff, 2005; Allen and Tibshirani, 2012). Under a general m-mode we obtain an
array normal distribution under separable covariance structure(Hoff, 2011b). The key
assumption in these settings is a weak row-column exchangeability which is substantially
more general than the exchangeability assumption typically invoked (Hoff, 2005; Orbanz
and Roy, 2013).

C.5 Concluding Thoughts

In this appendix I’ve tried to illuminate what the latent factor regression framework is
doing for particular cases. I’ve primarily discussed the two mode framework but a key
advantage of the model is the ability to extend easily to an arbitrary number of modes.
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D Improving Accuracy of the Variational Framework
In this appendix I provide a brief summary of relevant results on accuracy of posterior
inference in the variational framework including approaches to improve accuracy.

The variational algorithms presented in the main text produce quite faithful approxi-
mations to the true posterior. The results are particularly strong in the case of the normal
likelihood (which is conjugate) and in the single mode case (where we do not have to make
strong factorization assumptions). Theoretical results in Ormerod and Wand (2012) and
previous empirical results reported in the literature support this observation (Wand, 2014;
Lee and Wand, 2014; Tan and Nott, 2013).

In the next two sections I step through three settings where accuracy can be improved
and sketch some methods for trading off computational time for improved quality of
approximation. None of the methods described below have been implemented in the
results reported above. I have included the discussion of these approaches here in order
to demonstrate that improvements to the quality of the approximation are possible within
the variational framework. However, in the main text I chose to maintain the simplest
version of the available methods that also produced accurate results.

D.1 Non-Gaussian Likelihoods

The posterior approximation used here for the logistic regression case uses the Jaakkola
and Jordan (2000) bound on the sigmoid function. This is a quadratic bound which is
tight but only at the value of the variational parameters ξ. Previous empirical studies
suggest that the bound produces a small bias towards zero in the random effects which
disappears as the cluster size grows (Ormerod and Wand, 2012; Tan and Nott, 2013; Scott
and Sun, 2013). This accords with the findings in the simulations i ran for this paper.

Numerous alternative strategies have been proposed but here I highlight two in par-
ticular: the Non-conjugate Variational Message Passing scheme of Knowles and Minka
(2011), and piecewise bounds (Marlin, Khan and Murphy, 2011).

Knowles and Minka (2011) generalize the variational message passing scheme (Bishop,
2006) to handle non-conjugate factors by approximating them using an approximating
distribution in the same family as the prior. For the case of a multivariate Gaussian
approximation Wand (2014) provides a simplified update structure which enables efficient
computation. These updates were used in Tan and Nott (2013) to derive variational
algorithms for GLMMs which show excellent results.

For the logistic regression case, this scheme involves the calculation of an analyti-
cally intractable expectation. However, Ormerod and Wand (2012) show that it can be
reduced to a uni-dimensional problem and evaluated accurately using Adaptive Gauss-
Hermite quadrature. This results in a slightly slower algorithm but yields more faithful
representations of the posterior.

For the case of count models the required expectation can be evaluated in closed form
resulting in little tradeoff in speed (Luts and Wand, 2013; Wand, 2014).

An alternative strategy is similar to the bounding approach of Jaakkola and Jordan
(2000). Rather than using a quadratic bound that is tight only at a single point, Marlin,
Khan and Murphy (2011) advocate the use of piecewise bounds. By increasing the number
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of pieces, the bound on the nonconjugate term can be made arbitrarily tight resulting in
more accurate inference. This has the advantage of allowing variational inference to take
on a bit of the quality of MCMC where a continuous increase in computational cost results
in a continuous increase in accuracy. Experimental evaluations are given in (Khan et al.,
2010).

A particularly compelling application of the bounding approach is the extension to the
multinomial outcome case. The Jaakkola and Jordan (2000) does not extend to this setting
nor does the use of quadrature. Khan et al. (2012) develop a stick breaking likelihood
suitable for a categorical outcome for which efficient bounds could be constructed. This
would allow for the implementation of an approximate analogue of a multinomial logistic
regression that admits a tight bound.

D.2 Factorization

The key assumption in variational inference is the product density factorization of the
joint posterior. Stronger factorizations make the model more tractable but also less ac-
curate. In the single mode case the key assumed factorization is between the regression
coefficients and their variance parameters. In the case of unordered groups this assump-
tion is relatively mild but for Gaussian Markov Random Fields it is somewhat stronger.

Luckily we can always make our approximations arbitrarily more accurate by us-
ing conditional approximations. Whereas standard variational bayes might approxi-
mate q(x, θ|y) = q(x|y)q(θ|y) for a latent field x and hyperparameters θ we instead do
q(x, θ|y) = q(x|y, θ)q(θ|y) this is tractable for hyperparameters of low dimension like the
variances in a hierarchical model. This is the essential insight of Rue, Martino and Chopin
(2009) and is formalized in the VB context by Han, Liao and Carin (2013). It is also raised
Salimans and Knowles (2013) who describe it as a hierarchical approximation.

A milder form of this strategy is considered by Tan and Nott (2013) in their use
of partial non-centering of GLMMs. Here the partial non-centering parameters give the
model extra flexibility to handle the assumed factorization.

An open question is whether there is a straightforward equivalent of this to the
multilinear case. If there were it would be tremendously useful across a wide variety
of models but it seems unlikely as there is no single low-dimensional parameter to be
conditioned on. A reasonable strategy might be to instead us a mixture of distributions
to capture the joint approximation. A setting using a mixture of multivariate normals
is considered by Gershman, Hoffman and Blei (2012). By combining this nonparametric
approach with the gridding strategies in Rue, Martino and Chopin (2009) it may be
possible to construct a tighter approximation to the factorized terms.
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E Simulation
In this section I provide the necessary details to replicate the simulation results.

E.1 Single Mode Setting

In the first simulation of the single mode setting, I demonstrate the ability of the vari-
ational algorithm to recover parameters in hierarchical linear regression model with a
Gaussian outcome. After reporting details for the Gaussian outcome I describe estima-
tion for the hierarchical logistic regression model.

Gaussian Hierarchical Regression I use the data generating process from the help
file of MCMChregress in MCMCpack version 1.3-3 (Martin, Quinn and Park, 2011). Simu-
lations were run in R version 3.1.1 on a 3.2Ghz quadcore processor with 7GB RAM. The
code including the model estimation is given below.

nobs <- 1000

nspecies <- 20

species <- c(1:nspecies,sample(c(1:nspecies),(nobs-nspecies),replace=TRUE))

# Covariates

X1 <- runif(n=nobs,min=0,max=10)

X2 <- runif(n=nobs,min=0,max=10)

X <- cbind(rep(1,nobs),X1,X2)

W <- X

# Target parameters

# beta

beta.target <- matrix(c(0.1,0.3,0.2),ncol=1)

# Vb

Vb.target <- c(0.5,0.2,0.1)

# b

b.target <- cbind(rnorm(nspecies,mean=0,sd=sqrt(Vb.target[1])),

rnorm(nspecies,mean=0,sd=sqrt(Vb.target[2])),

rnorm(nspecies,mean=0,sd=sqrt(Vb.target[3])))

# sigma2

sigma2.target <- 0.02

# Response

Y <- vector()

for (n in 1:nobs) {

Y[n] <- rnorm(n=1,

mean=X[n,]%*%beta.target+W[n,]%*%b.target[species[n],],

sd=sqrt(sigma2.target))

}
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# Data-set

Data <- as.data.frame(cbind(Y,X1,X2,species))

model <- MCMChregress(fixed=Y~X1+X2, random=~X1+X2, group="species",

data=Data, burnin=1000, mcmc=10000, thin=10,verbose=1,

seed=NA, beta.start=0, sigma2.start=1,

Vb.start=1, mubeta=0, Vbeta=1.0E6,

r=3, R=diag(c(1,0.1,0.1)), nu=0.001, delta=0.001)

The results for the Gaussian case are given in the main text.

Logistic Regression Here I present results for a hierarchical logistic regression which
parallels the Gaussian outcome model. Again I use the data generating process given in
MCMCpack with the exception that I extend the burnin and number of posterior samples
to match the normal regression case. The full code is:

# Constants

nobs <- 1000

nspecies <- 20

simresults <- vector(mode="list", length=100)

for(s in 1:100) {

# Covariates

species <- c(1:nspecies,sample(c(1:nspecies),(nobs-nspecies),replace=TRUE))

X1 <- runif(n=nobs,min=-10,max=10)

X2 <- runif(n=nobs,min=-10,max=10)

X <- cbind(rep(1,nobs),X1,X2)

W <- X

# Target parameters

# beta

beta.target <- matrix(c(0.3,0.2,0.1),ncol=1)

# Vb

Vb.target <- c(0.5,0.05,0.05)

# b

b.target <- cbind(rnorm(nspecies,mean=0,sd=sqrt(Vb.target[1])),

rnorm(nspecies,mean=0,sd=sqrt(Vb.target[2])),

rnorm(nspecies,mean=0,sd=sqrt(Vb.target[3])))

# Response

theta <- vector()

Y <- vector()

for (n in 1:nobs) {

theta[n] <- inv.logit(X[n,]%*%beta.target+W[n,]%*%b.target[species[n],])

Y[n] <- rbinom(n=1,size=1,prob=theta[n])
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}

# Data-set

Data <- as.data.frame(cbind(Y,theta,X1,X2,species))

plot(Data$X1,Data$theta)

#== Call to MCMChlogit

model <- MCMChlogit(fixed=Y~X1+X2, random=~X1+X2, group="species",

data=Data, burnin=1000, mcmc=10000, thin=10,verbose=1,

seed=NA, beta.start=0, sigma2.start=1,

Vb.start=1, mubeta=0, Vbeta=1.0E6,

r=3, R=diag(c(1,0.1,0.1)), nu=0.001, delta=0.001, FixOD=1)

Run times are slightly more variable for the logistic regression case and are plotted in
Figure 1. MCMC runs for 41 seconds on average with variational running for 2 seconds.
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Figure 1: Distribution of run times for 100 simulations of the single mode logistic regres-
sion case.
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E.2 Two Mode Setting

In this simulation I demonstrate the ability of the variational algorithm to recover sim-
ulated parameters in the Gaussian outcome case with two modes and interactive latent
factors. In order to match the simulation to the FDI application, I use the observed
covariates from Büthe and Milner (2008). Each simulation then follows the following
procedure where nc is the number of countries in cindex and nt is the number of time
periods in tindex

k <- rpois(1,lambda=3) + 1

factor1 <- matrix(rnorm(k*nc), nrow=nc,ncol=k)

factor2 <- matrix(rnorm(k*nt), nrow=nt,ncol=k)

uv <-rowSums(factor1[cindex,,drop=FALSE]*

factor2[tindex,,drop=FALSE])

cint <- rnorm(nc)

tint <- rnorm(nt)

beta <- matrix(rnorm(9),ncol=1)

y <- c(X%*%beta) + cint[cindex] + tint[tindex] +

uv + rnorm(length(y))

y <- c(y)

All parameters are simulated from Normal(0, 1).

E.3 Model Misspecification

Here I provide some additional results for the models presented where covariates in the
true data generating process are omitted from the estimated models. In the paper I gave
two extreme examples: no covariates omitted and all but one covariate omitted. Here
I provide the cases between. In each case a random selection of covariates was dropped
whereas in the two extreme examples the observed covariates are the same across all
simulations.

Recall that I compare four alternative estimation strategies in addition to the latent
factor regressions:

1. One-Way Fixed Effects
“country” level intercepts which are the largest source of variation in the model.

2. Two-Way Fixed Effects
“time” and “country” intercepts. This is the additive two-mode model.

3. Global Linear Detrending with One-Way Fixed Effects
“country” intercepts and a linear time trend shared by countries

4. Country-Specific Quadratic Detrending
“country” specific quadratic time trends

39



−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

0 Missing Covariates

E
st

im
at

ed
 E

ffe
ct

●

●

●

●●
●
●●

●●

●

●●
●
●
●

●

●

●●

●

●

●
●

●
●

●

●

●●●

●●
●●

●

●●
●●

●

●

●

●●

●

●
●
●

●

●

●

●

●●●
●●

●●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●

●

●●
●●

●
●
●
●●●

●

●

●●

●

●

●●

●

●
●●●

●

●

●

●
●●

●
●●

●●

●
●
●

●

●

●

●

●
●

●
●●●●

One−Way FE
Two−Way FE

Linear Detrend

Quadratic Detrend

LF Reg

Figure 2: Reprinted from the main paper, here the estimating models use all of the
covariates in the true DGP. 25 simulations from a two-mode model with full observed
covariates. Each of the five estimation strategies is shown with 95% confidence/credible
intervals. The red dashed line indicated the true effect to be recovered.
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Figure 3: One random covariate is dropped in each simulation.
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Figure 4: Two random covariates are dropped in each simulation.

42



−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

3 Missing Covariates

E
st

im
at

ed
 E

ffe
ct

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●
●
●

●●

●●

●

●

●●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●●●
●

●

One−Way FE

Two−Way FE
Linear Detrend

Quadratic Detrend

LF Reg

Figure 5: Three random covariates are dropped in each simulation.
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Figure 6: Four random covariates are dropped in each simulation.
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Figure 7: Five random covariates are dropped in each simulation.
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Figure 8: Six random covariates are dropped in each simulation.
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Figure 9: Seven random covariates are dropped in each simulation. This is all but the
theoretical variable of interest.
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F Additional Application Details
This appendix collects additional details on the applications.

F.1 Understanding the Detrending Strategies for FDI

Before proposing a third model for the FDI data it is helpful to understand the differ-
ences in the detrending strategies proposed by both sets of authors. Figure 10 shows the
detrending patterns for GATT/WTO membership (the main independent variable) and
FDI inflows (the outcome). The first two columns on the top left show the linear and
quadratic detrending strategies on the GATT/WTO membership. What this plot makes
clear is that both strategies have the effect of creating overlap in the member and non-
member distributions such that a non-member country can have a higher value than a
member country of the membership variable. It also shows that the quadratic detrending
draws many more of the observations directly to zero including many observations where
there is membership. The effects of detrending on GATT/WTO membership are par-
ticularly severe because the covariate of interest is temporally persistent (once attaining
membership countries are not leaving). The differences in the FDI trends, which were the
main justification for the quadratic detrending, show more minor differences. However it
is clear that the distribution is flattened out a bit more under the quadratic detrending.
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Figure 10: A comparison of detrending strategies. From left to right we show the global
linear detrending (Büthe and Milner, 2008) with original, the country-specific quadratic
detrending (King and Roberts, 2014) with original and a comparison of the two detrending
strategies. The first row shows the GATT/WTO membership variable and the second row
shows the outcome. All observations are color coded by their membership status. Note
that in the second row we have zoomed in on the main portion of the data but there are
large outliers outside the range of the plot.
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