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1 Online Appendix

This appendix outlines a number of important details about the STM. We have organized

it into three sections (1) Model Estimation, (2) Model Validation, and (3) Getting Started.

The Model Estimation section (1.1) presents the details of model estimation, which de-

scribes an Expectation-Maximization based approach to optimization of the model pa-

rameters.

With this formal statement in mind, the Model Validation section overviews theoret-

ical and simulation evidence for the properties of the STM. Section 1.2.1 discusses the

STM compared to alternative tools for text analysis, highlighting both similarities as well

as important points of departure. Next in Section 1.2.5 we turn to a set of Monte Carlo

based evaluations of the STM. We also include a discussion of inference in one of the

paper’s empirical examples using a two-step LDA based analysis that does not formally

incorporate covariates in estimation.

The final section includes information directed at the applied user. Section 1.3.2 dis-

cusses the multiple testing problem and the use of the STM with pre-analysis plans. Sec-

tion 1.3.4 gives an example of using the STM alongside mediation analysis. Section 1.3.1

demonstrates two-software tools we have developed to enable efficient work-flow for re-

searchers using our methods.

1.1 Model Estimation

Before providing an overview of estimation we give the data generating process:

1. Draw ~ηd|Xdγ,Σ ∼ N (µ = Xdγ,Σ)

2. For n ∈ 1, . . . , Nd:

• Draw topic assignment Zd,n|~ηd from Multi(θ = ηd∑
η
))

• Draw word Wd,n|zd,n, ~κ from Mult(β ∝exp(m+ κkzd,n + κcUd + κIUdzd.n)
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There are two substantive differences to the notation from the main paper. We leave

the topic proportions in their unnormalized form and we expand out the notation for

prior distribution over words. Note also that γ and κ are maximized with a user-specified

regularizing prior. The defaults in the forthcoming R package are a Normal-Gamma prior

for γ and a sparsity promoting Gamma-Lasso (Taddy, 2013).

Model estimation proceeds via semi-collapsed mean-field variational EM. We integrate

out of the token-level assignments z and infer the unnormalized document proportions η

during the variational E-step. Then we solve for the token-level variational posterior φ in

closed form. The global parameters are inferred in the M-step. Estimation is complicated

by the non-conjugacy of the logistic normal and the multinomial. To deal with non-

conjugacy, in the variational E-step we use a second-order Taylor series approximation to

the optimal collapsed variational update as in Wang and Blei (2013). Note that this means

inference in our model does not enjoy the theoretical guarantees of mean-field variational

inference in the conjugate exponential family (see for example Grimmer (2011) for an

introduction to conjugate variational approximations for political scientists). Nonetheless,

the approximation described here has been shown to work well in practice in numerous

applications as well as in evaluations by Wang and Blei (2013).

Full details are available in a companion technical manuscript and code will be avail-

able on Github upon publication, if not before. However, for completeness we overview

the estimation below, omitting derivations.

1.1.1 General Inference Strategy

In mean-field variational bayes, we form a deterministic factorized approximation to the

posterior which minimizes the KL-divergence between the true posterior and the approx-

imation (Bishop, 2007; Grimmer, 2011). This turns the Bayesian inference problem into

an optimization problem. Thus we avoid the complications of convergence monitoring in

MCMC and also typically enjoy substantially faster run times.

In our case, we approximate the posterior distribution over the document-level la-

tent variables p(η, ~z) with the factorized posterior q(η)q(~z) which given the conditional

independence assumptions of the model further factorizes as q(η)
∏

n q(zn). We then seek
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to minimize the KL-divergence to the true posterior, KL(q||p). In conjugate exponential

family cases, standard derivations (Bishop, 2007) show that the optimal updates for the

variational posterior are:

q∗(η) ∝ exp(Eq(z)[log p(z, η)]) (1)

q∗(z) ∝ exp(Eq(η)[log p(z, η)]) (2)

Since the logistic-normal is not conjugate to the multinomial these distributions will not

be an easily normalized form. Instead we use an approximation (described in more detail

below) such that q(η) will be multivariate normal distribution with mean λ and variance

matrix ν, and q(z) will be discrete with parameter φ.

We speed convergence by integrating out z before optimizing q(η). This allows us

to skip the expensive iterative updating process at the document level by finding the

parameters q(η) that jointly maximizes the local document posterior.

The global parameters (γ,Σ, κ) are set to their MAP estimates during the M-step.

Thus the inference algorithm is analogous to a standard EM algorithm, except that we

take the expectations with respect to the variational distributions q(η) and q(z).

Thus in each stage of the EM algorithm we go through the following steps (note we

have placed substantive interpretations of the parameters in parentheses):

• For each document

– Update q(η) (document-topic proportions) by optimizing the collapsed objec-

tive

– Solve in closed form for q(z) (assignments to topic for each word)

• Update γ (coefficients for topic prevalence)

• Update Σ (global covariance matrix controlling correlation between topics)

• Update each κ. (topical-content parameters describing deviations from baseline

word rate)

• Repeat until convergence.
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Convergence can be assessed by monitoring either an approximation to the bound on

the marginal likelihood, or by change in the variational distribution q(η). In practice we

monitor convergence using proportional change in the approximate bound on the marginal

likelihood at the global level as in Wang and Blei (2013).

1.1.2 E-Step

In our case, the necessary expectations are not tractable due to the non-conjugacy, and

so we use a Laplace approximation. Following ? we find the MAP estimate η̂ and

approximating the posterior with a quadratic Taylor expansion. This results in a Gaussian

form for the variational posterior q(η) ≈ N (η̂,−O2f(η̂)−1) where O2f(η̂) is the hessian of

f(η) evaluated at the mode.

Integrating out the token level latent variables we solve for η̂ for a given document

which amounts to optimizing the function,

f(η̂) = −1

2
log |Σ−1| − K

2
log 2π − 1

2
(η − µ)TΣ−1(η − µ) +

(∑
v

cvlog
∑
k

βv,ke
ηk −W log

∑
k

eηk

)
(3)

where cv is the count of the v−th word in the vocabulary and W is the total count of words

in the document. This gives us our variational posterior q(η) = N (λ = η̂, ν = −O2f(η̂)−1).

Once q(η) is updated, q(z) is easily updated as a function of the mean of q(η), λ, by

φn,k ∝ exp(λk)βk,wn (4)

1.1.3 M-Step

In the M-step we update the global parameters which control topic prevalence and topical

content. The parameters for topical prevalence, are simply penalized maximum likelihood

estimation for a penalized seemingly unrelated regression model.

Σ is estimated as in Blei and Lafferty (2007) with the exception that each document

now has its own mean via Xdγ̂ and each document has a full covariance matrix νd. This

yields the update,

Σ̂ =
1

D

∑
d

νd + (λd −Xdγ̂)(λd −Xdγ̂)T
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In the estimation for topical content, we base our estimation strategy off of the work

of Eisenstein et al. (2011), again doing MAP estimation. The idea is that each topic is

represented as a deviation from the baseline word frequency m in log-space. Thus for topic

k, the rate is exp(m+ κk). Conditional on the token assignments φ this is a multinomial

logistic regression on words with a fixed intercept.

When estimating with covariates, for each covariate j we consider the word rate

deviation for any document of that covariate κj as well as a topic-covariate interaction

κj,k. Thus the form for the word probabilities is,

βk,j ∝ exp(m+ κk + κj + κj,k) (5)

We then solve each block of the κ’s separately with objective functions analogous to the

one above.

1.1.4 FREX and Semantic Coherence Scoring

In this section we provide technical details for a few of our model diagnostics. FREX

words are a way of choosing representative words for analysis. It builds off the work of

Bischof and Airoldi (2012) but with a substantially simpler model. Specifically FREX is

the geometric average of frequency and exclusivity. We define the exclusivity term as:

Exclusivity(k, v) =
βi=k,j=v∑

i βj=v

where i indexes the topics and j indexes the vocabulary words. Then our FREX score is:

FREX(k, v) =

(
ω

ECDF(Exclusivity(k, v))
+

1− ω
ECDF(βk,v)

)−1

where ECDF is the empirical CDF function, and ω is the weight given to exclusivity, here

.5 by default.

Semantic coherence comes from Mimno et al. (2011) and is based on co-occurrence

statistics for the top n words in a topic. Thus where D() is a function of a word index vi

which outputs the number of documents containing its arguments, we get

N∑
n=2

n−1∑
m=1

log

(
D(vn, vm) + 1

D(vm)

)
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Intuitively this is a sum over all word pairs in the top topic words, returning the log of

the co-occurrence frequency divided by the baseline frequency. The one is included to

avoid taking the log of zero in the event that a pair of words never co-occurs (which is

possible with very short documents). This measure is closely related to pointwise mutual

information.

1.1.5 Uncertainty

We can incorporate estimation uncertainty into subsequent analyses using the method of

composition. Popularized in political science by Treier and Jackman (2008) the central

idea is to integrate over our estimated posterior. We draw a sample from each document’s

approximate posterior as η̃d ∼ N (λd, νd) and convert to the simplex θ̃d = exp(η̃d)∑
k exp(η̃d)

. Then

we calculate our standard regression model and simulate from the regression’s posterior.

We repeat this process 100 to 1000 times and then combine all the results together to form

an approximate posterior which combines our estimation uncertainty. In ourR package we

provide tools both for simulating from the approximate posterior over θ and calculating

uncertainty under common regression models.

1.2 Model Validation

This section of the appendix overviews a series of validation exercises including compar-

isons to existing unsupervised models. Understanding that no single test can validate

the model, we build confidence in our approach by marshalling evidence from tests using

simulated data, permutation tests and additional tests using the real documents in our

presented experiments. When using real documents, we use the immigration dataset from

Gadarian and Albertson (2013) throughout for continuity.

In Section 1.2.1 we compare the STM to prominent unsupervised models within the

literature, highlighting the contrasts to existing approaches. We discuss the merits of

including covariates and jointly estimating their effects on the topics rather than using

a two-step approach. In Section 1.2.5 we use simulations to demonstrate that the STM

is able to recover parameters of interest. In Section 1.2.6 we move from simulated data

to a permutation test on actual documents in which we randomly permute the treatment
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indicator to demonstrate that the STM does not find spurious treatment effects. In

Section 1.2.7 we provide a comparison with a two-stage approach using standard LDA,

highlighting the differences on the immigration data. Finally, in Section 1.2.8 we compare

the STM results on the immigration data to the analysis of the same data with human

coders.

1.2.1 Comparison to Alternative Models

Computer-assisted methods for the measurement of political quantities of text have al-

ready seen widespread use in other areas of political science (Laver et al., 2003; Slapin

and Proksch, 2008; Grimmer, 2010; Quinn et al., 2010).1 In this section we contrast

our approach with three alternative unsupervised text analysis models in the literature,

focusing on the advantages of including covariates.

1.2.2 LDA and Factor Analysis

The standard Latent Dirichlet Allocation model can provide rich, interpretive semantic

depictions of text. However, central to LDA is the assumption of exchangeability, the idea

that the ordering of the documents in the corpus is irrelevant. Not only do we believe

that survey respondents naturally have systematic, and easily-measurable, differences

(e.g. gender, income etc.) but in experimental settings the design of the study suggests

non-exchangeability between treatment and a control condition. We could always simply

ignore this and run the standard LDA model, but even in a best case scenario where

comparable topics are estimated, the resulting estimate of the covariate effects will be

inefficient. We describe the process of running LDA (without covariate information)

followed by analysis of covariate relationships with the results resulting topics as a “two-

step” approach.

Indeed, Hopkins (2012) provides a recent example of the best use of the two-step

approach. He uses the correlated topic model, a close relative of LDA, to study open-ended

survey responses from 30,000 respondents on healthcare. One of his primary objectives

1In restricting our focus to the political science literature we naturally omit the large literature in

computer science, statistics and other social sciences. See Blei (2012) for a review of Latent Dirichlet

Allocation and related models.
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is to show trends over time and reaction to elite framing in press releases. Models such

as the STM would allow for an analysis that directly incorporates the effects of time on

topic proportions and also makes use of the rich demographic meta-data available on the

individual responses.

In Simon and Xenos (2004), the authors propose the analysis of open-ended survey

response using latent semantic analysis in a three stage process: data preparation, ex-

ploratory factor analyses and hypothesis testing. Specifically they advocate the use of

latent semantic analysis (LSA) because it is “rigorous, systematic, and, most of all, effi-

cient.” We agree with the goals of their work. Indeed our model exists in a lineage that

extends from latent semantic analysis; LDA was developed as a probabilistic formulation

of latent semantic analysis which is appropriate to discrete data such as word counts,

the STM is a related alternative to LDA appropriate to the inclusion of rich covariate

information.2 While LSA was amongst the best available techniques for the dimension

reduction of text at the time of the article, the STM represents advances in statistical

rigor and efficiency of the intervening decade. Furthermore, because The STM produces

an approximate posterior distribution over topic classifications, it is more amendable to

the kind of hypothesis testing advocated by Simon and Xenos (2004). By propagating our

uncertainty about a document’s coding, we can lower the risks of measurement error.3

We also note that the clear data generating process of the STM, allows us to avoid the

numerous practical issues that are discussed in length by Simon and Xenos (2004) such

as, weighting schemes of the word-frequency matrix and selection of rotation. The topics

themselves are also more interpretable than factor loadings, specifically in the STM or

LDA, the topic loading for a document is the percentage of words attributable to a latent

topic; by contrast, eigenvalues and document scores have little prima facie meaning to

2Buntine and Jakulin (2005) shows that multinomial principal components analysis and LDA are

closely related models. In addition to the numerous theoretical benefits, the use of the LDA framework

side steps the numerous practical difficulties of the standard principal components analysis advocated

by Simon and Xenos (2004). In particular the user is not faced with un-interpretable quantities such as

negative factor loadings or concerns about rotations.
3See Grimmer (2010) for arguments on this in the context of text data, and Blackwell et al. (2011);

Treier and Jackman (2008) on measurement error in other contexts.
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the user. Thus, we argue that the STM offers all the advantages of the framework laid

out by Simon and Xenos (2004) with the addition of numerous quantities of interest.

1.2.3 Single-Membership Models with Covariates

The literature on single-membership models in political science offers another appealing

approach. Work such as the Dynamic Topic Model (Quinn et al., 2010) and the Expressed

Agenda Model (Grimmer, 2010), take into account systematic variation amongst docu-

ments based on specific characteristics such as time and authorship. These models allow

the analyst to specify political knowledge about the documents at the outset. However,

these existing single-membership models have focused on modelling particular types of

structure. The STM generalizes these models by allowing any structure which can be

captured in a general class of linear models. This allows the STM to model time, author-

ship, or time and authorship interactions all within the same framework. The STM also

provides variational posteriors over the parameters which provide estimates of uncertainty

(similar to the Expressed Agenda Model but not the Dynamic Topic Model).

These models also assume that responses contain words originating from only a single

topic. This can be advantageous as it often makes the corresponding optimization problem

easier, with fewer local modes. However, we argue that in most open-ended responses,

survey respondents are likely to give multi-faceted answers which could touch on a variety

of semantic themes. At a minimum it is desirable to relax this restrictive assumption and

see if the results change substantively. Furthermore, each of these models assume that

topics are talked about in the same way, whereas as the STM allows (for example) men

and women to talk about the same topics differently, as we describe in our empirical

examples and simulations.

Single-membership models in political science do establish and excellent tradition

of validation of the topics based on external political phenomena and careful reading

(Grimmer and Stewart, 2013). These validations can be performed in our setting by

using model output to examine documents which contain a large percentage of words

devoted to a particular topic. In the STM model, the analyst can also use the covariate

relationships in both topic prevalence and topical content to verify that the results are
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sensible and in line with theoretical expectations. The best validations will necessarily be

theory-driven and application specific, but we direct interested readers to Krippendorff

(2004) for some excellent guidelines and Quinn et al. (2010) for some excellent applied

examples.

Thus, previous work highlights a useful insight; including information about the struc-

ture of documents can improve the learning of topics. These changes can be motivated in

the language of computer science via the no-free lunch theorem (Wolpert and Macready,

1997), or statistically via literature on partial pooling (Gelman and Hill, 2007). The

source of the improvement is the identification of units which are “similar” and allowing

the model to borrow strength between those units, without making the stronger exchange-

ability assumptions.

We can summarize the relative merits of the STM framework with Table 1 inspired

by the table of the common assumptions and relative costs of text categorization in Quinn

et al. (2010).

Hand Coding Factor Analysis LDA Single Member STM
Categories Known Yes No No No No

Mixed-Membership No Yes Yes No Yes
Covariates on Prevalence No No No Limited Yes

Covariates on Content No No No No Yes
Interpretable QOIs Yes No Yes Yes Yes

Uncertainty Estimates No Limited Yes Yes Yes

Table 1: Relative Merits of STM and competing approaches for analysis of open-ended
survey response.

1.2.4 Estimation vs. Two-Stage Process

We can contrast the STM’s joint estimation of covariates and topics with a two-stage

process in which some method (factor analysis, LDA, human classification) is first run

and then the estimated topic proportions are entered into a regression of interest. The

intuitive appeal of a two-stage estimation with LDA is the ease of use and the separation of

hypothesis testing from measurement. Indeed the analyst might reasonably be concerned

that joint estimation of the topics and covariates will induce spurious correlations between

the topics and the variables of interest (although in the next section we demonstrate using
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Monte Carlo simulations that this is not the case).

The hidden cost of two-stage estimation is the inability to adequately account for our

uncertainty. Specifically, we are unable to propagate the uncertainty in our classifications

to our regressions with covariates, since the naive approach will condition on the observed

values of the topics developed in the first stage. Furthermore, the model implicitly assumes

that, in expectation, the topics are discussed in the same way and with the same prevalence

across all respondents. In Section 1.2.7 we explore this approach and highlight problems

with it.

The concern about spurious correlations is reasonable, and any time we use unsu-

pervised methods for measurement we must be careful to validate our findings. Spurious

correlations can arise even in a two-stage process if, for example, the analyst iterates

betweens specifications and observing covariate relationships. In the STM model, we ad-

dress these concerns with regularizing priors which draw the influence of covariates to zero

unless the data strongly suggests otherwise. In practice, this means that the analyst can

specify the degree to which she wants the covariates to enter into the model. Standard

diagnostics such as posterior predictive checks or cross-validation can also be used. Pos-

terior predictive checks in particular have been shown to be able to diagnose violations

of assumptions in LDA, providing one method of checking whether additional structure

needs to be incorporated in the model (Mimno and Blei, 2011).

1.2.5 Monte Carlo Analysis

In this section we use simulated data to test the model. Unfortunately the process of

writing natural language text bears little resemblance to the bag-of-words data gener-

ating process assumed by almost all topic models. In some cases this is to the model’s

disadvantage, because the interdependencies amongst words are more deeply complex

than the model’s assumptions. Yet, in many cases it is an advantage; there are features

to natural language text, that make it amenable to analysis of this sort: people write with

finite vocabularies, use words consistently and tend to write about relatively focused top-

ics. Simulation parameters must be carefully chosen to reflect patterns we can reasonably

expect to find in text. Accordingly we provide a series of tests in this and the following
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sections which move from purely simulated documents to full analyses on real texts.

The advantage of purely simulated data is that we can compare recovery to the known

truth. The evaluation of parameter recovery is complicated by issues of identification in

the model. At the most basic level topics are invariant to label switching (Topic 1 and

Topic 2 could be switched since the number is irrelevant), and there can be myriad causes

of local modes in the posterior. Indeed under some very general conditions the LDA

inference problem is probably NP-hard (Sontag and Roy, 2009). In order to compare

comparable units between model fits, we use the Hungarian algorithm to approximate

the best possible match (Papadimitriou and Steiglitz, 1998; Hornik, 2005). The Hun-

garian algorithm solves the optimal assignment problem (which is typically NP-hard) in

polynomial time, a speed advantage which becomes important when the number of topics

is above 4.

Basic Simulations For our most basic simulations, documents are created according

to the generative model for LDA with different means for each topic depending on the

treatment assignment. Thus the generative process for the corpus parameters is:

βk ∼ Dirichlet(.05)

αt=0 = (0.3, 0.4, 0.3)

αt=1 = (0.3− ATE, 0.4, 0.3 + ATE)

where each of the k topics for k ∈ 1, 2, 3, is drawn from a symmetric 500-dimensional

Dirichlet with concentration parameter of .05. The mean of the document topic propor-

tions is based upon the treatment assignment, where the first half of the documents are

assigned control, and the second half are assigned treatment. Then for each document

Nd ∼ Poisson(ζ)

θd ∼ Dirichlet(αd ∗G0)

~wd ∼ Multinomial(Nd, θdβ)

We consider a host of different parameters but for space present here only the results

across the following dimensions: Number of Documents (100 to 1000 by 100 increments),
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Figure 1: Estimated average treatment effect with 95% confidence intervals holding ex-

pected number of words per document fixed at 40, and the concentration parameter fixed

at 1/3. The STM is able to recover the true ATE both in cases where there is no treat-

ment effect (left) and cases with a sizable treatment effect (right). As expected, inferences

improve as sample sizes increase.

ζ the expected number of words (40), the size of the ATE (0, .2), and G0 the concentration

parameter for the Dirichlet (1/3).

We estimate the STM model on each dataset using default parameters for the prior.

We then calculate the modal estimates for the topic proportions (θ) and perform a stan-

dard OLS regression to get estimates of the treatment effect and confidence intervals.

The results are shown in Figure 1. In the case of no treatment effect as well as a

sizable treatment effect, the STM is able to recover the effects of interest. As expected,

uncertainty shrinks with sample size.

Interaction Simulations Here we consider a slightly more complex simulation. Specif-

ically we consider a continuous variable which under control has a negative effect on a

topic, and under treatment has a positive effect on a topic. In each case we simulate with

100 documents, a vocabulary size of 500 and 50 words per document in expectation. The
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Figure 2: Simulated covariate effect, where treatment assignment causes a continuous

variable along the X axis to have either a positive or negative effect on a topic. Lines

shown are the true relationships for each simulation while the dots indicate the true latent

parameters for a single dataset.

true relationships are plotted in Figure 2 along with a sample of what the true latent data

might look like for a particular simulation.

Using the STM and LDA we fit a model to each of 250 simulated datasets. For

each dataset we plot a single line to indicate the treatment effect and the control effect

(separated here for clarity). Lines are plotted semi-transparently for visibility with the

true relationship super-imposed as a dotted black line. The fitted lines are shown in

Figure 3.

Since it can be difficult to see the distribution, we show a histogram of the recovered

slopes with a thicker black line demarcating the true value. These are plotted in Figure

4.

These simulations indicate that while LDA does sometimes correctly find the rela-

tionship it often is unable to capture the dynamic appropriately, in some cases reversing
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Figure 3: Covariate relationships recovered for treatment and control cases by LDA and

STM.
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Figure 4: Slopes of continuous covariate effects recovered by STM and LDA
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the sign of the effect. The STM by contrast tightly adheres to the true effect.

The reason the majority of the simulations appear below the line in both cases is an

artifact of the data generating process. Document proportions are simulated in a con-

tinuous space but in practice the expected topic proportion is effectively discretized by

the number of words. As a result, the true proportions are going to be slightly under-

estimated at both ends. The element of interest, both for the simulation as well as in

practical examples is the slope of the line which constitutes the effect of the covariate

under the two regimes.

1.2.6 Permutation Analysis

In this section we use one of our examples of real text data to show that when we randomly

permute treatment assignment between text documents, we do not recover a treatment

effect. This is further evidence that our model does not induce an effect when one does not

in fact exist. In addition, under the true treatment assignment we see the most extreme

effect, verifying that our results are not an artifact of the model, but instead reflect a

consistent pattern within the data.

To do this, we use the Gadarian and Albertson (2013) data to estimate the effect

of treatment on anxiety toward immigrants.4 We estimate our model 100 times on this

data, each time with a random permutation of treatment and control assignment to the

documents. We then calculate the largest effect of treatment on any topic. If the results

relating treatment to topics were an artifact of the model, then we would find a significant

treatment effect regardless of how we assigned treatment to documents. If the results were

a reflection of a true relationship between treatment and topics within the data, we would

only find a treatment effect in the case where the assignment of treatment and control

align with the true data.

Figure 5 shows the results of the permutation test. Most of the models have effect sizes

clustered around zero, but the estimation that included the true assignment of treatment

and control, indicated by the dotted line, is far to the right of zero. This indicates that

the estimation itself is not producing the effect, but rather that the relationship between

4To simplify the permutation test, we do not include Party ID as a covariate.
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Figure 5: Maximum Treatment Effect Across Permutations

treatment and topics arises within the data.

Note that more than 5% of the intervals don’t cover zero, this arises, among other

factors, from searching for the largest effect size. Such a search would be inappropriate in

the standard use of permutation tests but provides a more rigorous test of our claim. It

also is suggestive evidence against a concern with multiple testing in this framework. We

return to this issues later, but essentially were multiple testing over topics putting us at

risk of finding consistently large spurious effects, we would also see large spurious effects

in our permutation test. As we don’t, we take that as evidence for a cautious optimism

that multiple testing concerns are not a huge problem here.

1.2.7 Comparison with LDA

An important question we asked ourselves in developing our approach was ‘is there any

need to go beyond a two-step process using Latent Dirichlet Allocation (LDA) first and

then estimating covariate relationships after the fact?’ We addressed this with simulated

data above, but it is useful to add to those findings an assessment on real data. Specifi-

cally we are interested in characterizing whether LDA is able to recover a simple binary
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treatment effect in one of our real datasets.

In order to demonstrate the differences in solutions attained by the two methods, we

re-analyze the immigration data from Gadarian and Albertson (2013). As with STM, we

first remove all stopwords and stem the corpus before conducting our analysis. We take an

additional step of removing any word which only appears once in the corpus and any doc-

uments which subsequently contain no words. The unique words cause instability in the

LDA analyses whereas STM is relatively unaffected due to the use of prior information.5

We estimate LDA using collapsed Gibbs sampling (CGS), with fixed hyperparameters

both at .05, running for 1000 iterations discarding 950 for burnin.6 We estimate STM

using default priors and using only the binary treatment indicator. As in the permutation

test this simplifies the interpretation and crucially it biases against STM because it means

we are using considerably less information than is available.

We start by running each algorithm 250 times with different starting values. We

evaluate each run on our two selection criteria: semantic coherence, which measures the

frequency with which high probability topic words tend to co-occur in documents, and

exclusivity which measures the share of top topic words which are distinct to a given topic.

In each case we use a comparison set size of 20 which was chosen in advance of viewing the

results. We emphasize that our model does not directly optimize either criterion and thus

5The stabilizing influence is most likely a result of the structured priors in STM. Inference for topic

assignment of words which only appear once comes from other words in the same document as the single-

appearance words. Thus imagine the word “unlikely” appears only once in the corpus. In LDA its topic

assignment will be based on the proportion of words assigned to each topic within the same document.

In STM the assignment will be based both on the other words within the same document, but also other

words in documents with similar covariate profiles. This tends to lead to inference which is more stable

across initializations.
6Collapsed Gibbs sampling (CGS) for LDA is far in excess of what is needed for convergence. Many

analysts simply use the final pass rather than averaging over iterations, but we use the last 50 in order

to decrease sampling variability. To remove sampling variability as an issue we had originally used a

variational approximation of LDA, but the algorithm produced pathological results for the K=3 case

we consider here when estimating the Dirichlet shape parameter on topic prevalence. We do however

emphasize that CGS is generally considered to be more accurate than standard variational approximation

for LDA.
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it provides a fair basis for comparison between the two models. Figure 6 shows the space

of all LDA and STM solutions with larger numbers being better along each dimension.

−420 −400 −380 −360 −340 −320

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

LDA vs. STM for Immigration Data

Semantic Coherence

E
xc

lu
si

vi
ty

LDA
STM

Figure 6: Semantic Coherence and Exclusivity for 250 runs of LDA and STM using

different starting values.

We note that in general, STM provides more exclusive solutions where LDA favors

semantic coherence. We note however that STM does provide a few solutions with the

maximum level of semantic coherence attained by either model but with higher exclu-

sivity than LDA. The plot also highlights the implicit tradeoff between coherence and

exclusivity; that is, it is trivially easy to have either extremely high coherence (by having

all topics have the same top words) or high exclusivity (by picking completely disjoint

sets which do not co-occur in actual documents) and thus it is useful to examine both

criteria in concert. We hope to explore whether these general trends hold across different

document sets in future work.

In order to examine more closely examine results that are favorable to each model,

we randomly choose a high performing solution using the same steps discussed in the
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paper. First we discard any solution below the 75% quantile along each dimension. Then

we randomly select a solution from the remaining models for analysis. While in actual

data analysis it would be best to look at several options and choose the most useful

representation of the data, for the purposes of fairly comparing the two algorithms we

made one random selection and did not search over other alternatives.
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Figure 7: Treatment effects from a randomly selected high performing LDA and STM run

on the immigration data.

We plot the two results in Figure 7 (aligning the results so comparable topics are

on the same line). Words shown are the highest probability word stems (rather than

the FREX words we use elsewhere in the paper, here we use highest probability words

for comparability with standard LDA practice). Our model selection procedures are

successful in that both solutions are reasonable and quite similar. The estimates of the

treatment effects for LDA are higher but with much larger confidence intervals suggesting

considerably more heterogeneity in the treatment and control groups.

This is consistent with the topics themselves which are more focused in the STM

model. Looking over the different topics from the LDA estimation, we see that the words

are not very exclusive to topics: “immigr”, “illeg”, “people”, “countr”, and “com” all
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appear in multiple topics. In contrast, the STM has much more exclusive topics: there

are no overlapping words across topics. Even though the topics between LDA and STM

are quite similar, interpretation in the more exclusive STM topics is more straightforward.

The topic reflects both that the respondent is talking about immigration and the reasons

for the respondent’s concern. By contrast in the LDA version of the topic, the user can

only determine the general topic, which seems to be common across all estimated topics.

This analysis is intended to provide a single concrete example to show the contrast

between LDA and STM with real data. We emphasize that these results should not

be taken as universal and analysis was done to emphasize comparability between the

two methods as opposed to best practice. Thus we highlight two points: (a) LDA will

not generally produce larger treatment effect estimates with wider confidence intervals,

and (b) a careful analysis would examine documents rather than just looking at highest

probability words. Our analysis of the immigration data is contained in the main body

of the paper, but this section’s analysis helps to contrast the two approaches with actual

documents, as a complement to the simulated data used above.

1.2.8 Comparison with Hand-Coded Results

Here we cover the specifics of our comparisons between our results and the results from

the hand-coding. The first thing to note is our topics do not match up perfectly with

the categories that the coders used. This should not be a surprise, since we are using an

unsupervised method whereas the human coders received supervision via a set of instruc-

tions. In particular, our topics do not have many words that seem to evoke “concern”

or “enthusiasm” for immigrants. However, this is somewhat consistent with the human

coded results because the human coders coded very few documents as expressing these

topics. RA 1 classified only 18% of those who took the survey as having either enthusiasm

or concern for immigrants. RA 2 classified 23% as having either enthusiasm or concern.

These low numbers are in line with our analysis in that we did not retrieve very many

words related to concern or enthusiasm and hence our results are consistent with Gadarian

and Albertson (2013)

Even though the topics and coder categories do not match perfectly, the vocabulary
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No Concern Concern
0. Think 0.76 0.23

1. Worried 0.87 0.13

Table 2: Treatment and Concern for Immigrants, RA 1

No Concern Concern
0. Think 0.65 0.27

1. Worried 0.76 0.16

Table 3: Treatment and Concern for Immigrants, RA 2

associated with Topic 1 is more closely in line with fear of immigrants and anger toward

immigrants, and so we will compare Topic 1 to the fear and anger categories. Aggregating

across the treatment conditions, RA1 classified 56% of respondents as having negative

views of immigrants (either fear or anger), and RA2 classified 79% of respondents as

having a negative view of immigrants. The data clearly has a much richer and present

vocabulary that corresponds to fear and anger toward immigrants.

The treatment effect we uncovered using the Structural Topic Model corresponds to

what Gadarian and Albertson (2013) find with human coders. To see this effect from

the human coding, Table 1.2.8 and 1.2.8 shows the breakdown by treatment and control,

where “Concern” refers to responses that were coded either into concern or enthusiasm.

Tables 1.2.8 and 1.2.8 show the breakdown when looking at the negative views of immi-

grants that is captured by our Topic 1, where “Negative” refers to responses that were

coded as either containing fear or containing anger toward immigrants. The treatment

increases the likelihood of a response with fear or anger under the coding scheme, in line

with what the topic model uncovers.

An additional way to compare our results with that of the human coders is to consider

the correlation between the hand-coding and the document-level probabilities of topics.

Not Negative Negative
0. Think 0.60 0.39

1. Worried 0.26 0.74

Table 4: Treatment and Negative Views Toward Immigrants, RA 1
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Not Negative Negative
0. Think 0.32 0.60

1. Worried 0.06 0.86

Table 5: Treatment and Negative Views Toward Immigrants, RA 2

Because the topics are different than the pre-determined hand-coded topics, we should

not necessarily expect the predicted document proportions and the coders’ classification

to completely line up. This is particularly the case because the hand coders put the

majority of posts into either fear or anger. However, we should see some relationship

between the probability that a response is in the fear and anger topic estimated by the

Structural Topic Model and the human coding of these same responses.

To examine document-level agreement, we take observations where the coders were in

100% agreement about the classification. We would expect documents where the coders

agree to be the most clearly classifiable. Figure 8 presents a histogram of the documents

by the predicted proportion of a document in that topic, coloring each document by the

category given by the coders. The x-axis on the histogram is the predicted proportion of a

document in Topic 1. Documents on the left side of the barplot have very low proportions

of Topic 1, while on the right side of the histogram have very high proportions of Topic

1. The colors on the bar plot represent the coders’ classification of the same documents.

For example, all of the documents with between 0 and .1 proportion of Topic 1 are coded

either as having enthusiasm or not given a category. On the other hand, almost all of the

documents with over .8 of Topic 1 were either coded with fear or anger.

We do see a correlation between the topics assigned to documents by the topic model

and the classification done by the coders. Documents with high proportions of Topic 1

are more likely to be coded with fear and anger, and are rarely coded with enthusiasm or

not categorized. We might be able to, for example, use the topic probabilities generated

by the topic model to predict whether the coders would categorize a post into either

enthusiasm or no category with a fairly high success rate.
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Figure 8: Coders’ Classification Compared to Unsupervised Topic Proportions

1.3 Getting Started

In this section we discuss topics of interest to the applied user. Section 1.3.2 covers

concerns about multiple testing as well as the application of pre-registration and false dis-

covery rate methods. In Section 1.3.1, we describe the standard pre-processing algorithms

we employ as well as introduce a new software tool for pre-processing and working with

texts. In Section 1.3.3 we introduce a second software tool which provides an interactive

visualization interface for exploring the results of topic models. In Section 1.3.4 we show

how to use our approach to perform mediation analysis.

1.3.1 Text Preparation and Custom Pre-Processing Software

In our examples below, we adopt a set of procedures which are standard pre-processing

steps in computational linguistics (Manning et al., 2008). First we remove punctuation,

capitalization, and stop words from the open-ended responses. Stop words are terms that

are so common as to be uninformative. For example, the word “and” occurs in nearly all

responses. As such, a respondent’s use of the word “and” conveys little to no information
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about the topical content of the response. If stop words like “and” are not removed,

the model may discover topics that are described primarily by stop words, due to their

relatively high frequency of occurrence. And even if stop words end up scattered across

topics, these associations are likely spurious.

Next, the remaining words are stemmed. Stemming is the process of reducing inflected

words to their lexical roots, or “stems.” All the terms that share a common root are folded

into a single term. This term need only be unique from all others; it does not need to

be a real word. For example, in some implementations (including the one we use), the

words happiness, happiest, and happier are all reduced to the stem “happi.” Because the

inflected variants of a common stem are probably all associated with a common topic,

stemming generally improves performance with small data sets. Gains from stemming

decrease with larger data sets, as the the model is less likely to spuriously assign variants

of a common stem to different topics. In our analysis, we employ the canonical Porter

Stemming Algorithm (Porter, 1980), which operates by algorithmically stripping away

the suffixes of words and returning only the roots, or stems, of the original words.

The remaining terms are then transformed into a vector-space representation called

a term-document matrix (tdm). For example, let T index the unique terms in the data

and D index the documents. Let M be a tdm. Then M = [mt,d]T×D, where cell mt,d

is the number of times term t occurs in document d.7 Column m∗,d is then a vector

representation of document d, which can be analyzed with standard techniques from

multivariate analysis. All statistical analyses are computed on the tdm. To facilitate we

wrote a multi-featured txtorg text management interface discussed below.

Notably, by discarding the structure and linear ordering of the words in the docu-

ments, the tdm makes the simplifying assumption that documents can be represented as

an unordered “bag of words.” While perhaps counter-intuitive, this approach yields a

reasonable approximation while greatly improving computational efficiency.8 We empha-

7Occasionally, cell values are indicators for whether or not term t appeared in document d.
8Typically we use the space of single words, called unigrams. We can easily incorporate a level of

word order by incorporating bi-grams or tri-grams. Unfortunately the number of terms grows extremely

quickly. The consensus in the literature is that unigrams are sufficient for most tasks (Hopkins and King,
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Figure 9: Screenshot of txtorg

size that these data preprocessing choices are separate from our method in the sense that

the analyst can choose to apply them or not based on their particular case.

To facilitate the proposed workflow we developed a software package Txtorg (Lucas

et al., 2013) to prepare our data for analysis. While the stm package contains a a function

textProcessor to setup data that is in a spreadsheet format, and can be processed by the

tm package, Txtorg contains numerous other functionalities. Txtorg is a scalable Python-

based tool with a full-featured graphical user interface that makes the management of

textual data simple and intuitive for everyone. By leveraging the power of Apache Lucene

(The Apache Software Foundation, 2013), Txtorg enables users to store and search large

amounts of textual data that would otherwise be unwieldy. A screenshot of the Txtorg

user interface is presented in Figure 9.

Txtorg uses Apache Lucene to create a search index, which allows for local storage

and quick searching, even with large corpora. Search indices, like those created by Txtorg,

2010)
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allow queries to return the relevant documents without scanning the entire corpus. More-

over, the index created by Txtorg is compressed to a fraction of the size of the original

corpus, and from it, full corpora can be recovered. Txtorg also provides the user with a

number of different preprocessing utilities, with which corpora can be cleaned prior to the

indexing stage. And because Txtorg uses Apache Lucene, it can leverage a wide array of

use cases, including non-English text and various export formats.

A typical workflow with Txtorg might then proceed as follows. Steps 4 - 7 may be

repeated infinitely without repeating earlier steps.

1. Collect data: Here, Txtorg is agnostic, as the program can be used with a wide

range of data types, ranging from survey responses to Chinese poetry written in

Mandarin.

2. Organize data: Depending on the original source from which the data were col-

lected, reformatting may be necessary. Specifically, Txtorg can import corpora

stored in one of three formats - a field (column) in a csv file (common for data gen-

erated by a survey), a directory containing the individual documents as .txt files,

or a csv with a field containing the file paths to the individual documents in the

corpus. If the data are imported as a field in a csv file, the remaining columns in the

csv are imported as metadata. For example, a researcher might upload responses

to an open-ended survey question stored as a field in a csv. The remaining columns

may be responses to closed-ended questions, such as sex, age, and education. If the

data are not imported as a field in a csv, metadata may be imported separated as

a csv.

3. Clean the data: Through Python, we provide several important preprocessing util-

ities within Txtorg. For example, Txtorg can convert numerous encoding schemes

to UTF-8 and replace user-specified strings of text with alternative text strings.

4. Import the data: Select the import data option from a drop-down menu. The

corpus is then indexed and the index is saved locally.
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5. Preprocessing: Next, the user may choose to implement any of several forms of

preprocessing supported by Txtorg. Most importantly, Txtorg supports stemming,

stop word removal, and phrase indexing. Txtorg implements the canonical Porter

stemming algorithm, which users may simply turn on and off at any time. Similarly,

users can turn stop word removal on and off as they please, and may change the list

of stop words at any time. Phrase indexing is somewhat less flexible. By default,

the Txtorg indexes all single-word tokens (unigrams). If a researcher wishes to

search and index tokens longer than a single gram (for example, “border security”),

these grams must be imported at step 3, when the user imports the data. If after

importing the data, the user wishes to index phrases longer than a single gram, the

corpus may be re-indexed with an updated list of phrases.

6. Searching the corpus: Next, the user may search and subset the index by the

terms in the individual documents or by document metadata. The search function

is sophisticated, allowing users to string together multiple searches. For example,

a researcher might be interested in the set of documents written by individuals in

specific treatment conditions, or by men between the ages of 18 and 30 who are either

Hispanic or black mentioning “border security” or “national security.” Txtorg can

implement searches of this form and complexity, as well as more simple searches.

Finally, users may also select the entire corpus.

7. Exporting the data: After selecting the documents of interest, users can export

the data as either a term-document matrix or as entire documents. Txtorg supports

two primary TDM formats, the LDA sparse matrix and the standard, flat csv.

Documents exported in their entirety are written to a directory as txt files. Users can

also restrict the terms that appear in the TDM according to frequency of occurence.

8. Analysis: Finally, the user may conduct any sort of analysis on the exported data,

including those based on the structural topic model explained in this paper, but

also analyses of other forms, from LDA to manually reading the documents in their

unprocessed entirety.
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Perhaps Txtorg’s most compelling feature is its speed, especially with large corpora.

Sequentially searching through all responses to subset on a specific term is incredibly slow,

and literally impossible in some cases. By creating an index, search time decreases by

orders of magnitude. One can easily analyze just those responses containing “immigration

reform,” then seconds later export and analyze the TDM for responses containing “border

security”.

A second selling point is the program’s ability to subset and sort data without editing

the original index. Perhaps a researcher conducts an initial analysis on responses from

college students, then in a subsequent project, wishes to examine racial minorities. Or

one might want to examine the responses mentioning “President” separately from the full

corpus. Subsetting responses with a simple script would be tedious in cases where the

data are small, and impossible where they are large. With Txtorg, after the corpus is

indexed, researchers can quickly pull from it as many unique TDMs as they like, at any

point in time.

1.3.2 Multiple Testing

There is reasonable concern that with large groups of topics multiple testing will cause the

researcher to find spurious relationships between covariates and topics. Put intuitively the

idea can be stated that as the number of topics grows, iteratively testing treatment effects

over all topics in the model will cause a false positive significant result. We discuss why

this concern might not be as troubling as it first appears, and then discuss how certain

methods can be used to address it.

On one view, standard p-values are misleading in this setting because the null distri-

bution is not particularly believable (Gelman et al., 2012). That is, we chose to incorporate

a covariate into the model because we believe that there is an effect on word choice and it

is unlikely that any effect would be exactly zero. Thus the question is really more about

estimating effect sizes correctly rather than rejections of a sharp null. While this view is

appealing, it still does not address the nagging concern that comparison over many topics

will tend to cause us to see spurious relationships where there are none.

Even if there is a spurious relationship found by the model, it does not mean it is
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a substantively interesting topic. For the researcher to come to an incorrect conclusion

there must be a significant covariate on a topic that has a semantically coherent and

intellectually relevant meaning. For those who still have concerns, we conducted a per-

mutation test in the previous section. There we showed that even when searching for the

maximum effect in the permuted data, the true effect with the real treatment indicator

was an enormous outlier. This suggests that spurious effects are not as common as people

might fear.

Still for those willing to expend additional planning and effort, it is possible to further

hedge against the risk of false positives. In some experimental settings, researchers limit

their risk by adopting pre-analysis plans. These plans specify which relationships they

will test and what they will expect to find. In the topic model setting, researchers can

specify word groups that they expect to co-occur and the effect they would expect to

find on such topics. This could be as informal as expecting to find that issues about

the ‘economy’ are likely to appear in the ANES most important problems and the likely

relationship with household income. On the more rigorous side, analysts could specify a

list of word stems beforehand and only consider topics which contain a certain percentage

of those key words.

An alternative approach is to condition on the model results but augment testing

with False Discovery Rate methods (see Efron (2010) for an overview). Conditioning on

the model we treat the topic proportions as observed data and apply standard corrections

as with any other dataset. These methods have been shown to be effective in genetics

where there are often tens of thousands of tests; by contrast, we will typically have far

fewer topics.

1.3.3 Post-analysis visualization

For those unfamiliar with topic modeling the output from standard software can be over-

whelming. Models typically contain thousands of parameters which must be summarized

for user interpretation. Typically an analyst will develop custom functions which sum-

marize parameters of interest for their specific application. In addition to a rich set of

functions for performing the types of visualizations reported in this paper, we have also

30



been developing a more general visualization and model summary tool which builds on

recent efforts in computer science (Gardner et al., 2010; Chaney and Blei, 2012).

Here we highlight our ongoing work on the Structural Topic Model Browser (STMB).

The STMB visualizes output from the model in a standard web browsing format. It

incorporates information at the corpus level as well as individual views of each document.

We believe that browsers of this sort serve a crucial role in connecting the end user to

the original text, and help to make good on the promise of topic model as a method for

computer-assisted reading. The software will be made available as an open-source project

on Github which will allow easy access for the end user as well as other developers who

may wish to adapt the code or add features.

To use the browser, the user passes the original documents and covariate information

as well as the model output to a visualization script written in Python. In addition,

the user specifies the number of words to be displayed for a topic. In this example,

we’re exploring a structural topic model of the ANES data that combined all of the most

important problem questions with 55 topics and 5 words displayed per topic.

The Index Page for the website lists each topic and the most probable words under

that topic. Figure 10 shows the Index Page of the browser for the ANES dataset.

From the browser page, each of the topic listings, e.g. “Topic 10”, function as links

to individual Topic Pages. The Topic Page contains a number of important metrics about

the topic’s fit and relationship to documents. In addition to the top words as displayed

on the index page, it contains the top FREX-scored words, as described in Section 1.1.4.

The Topic Page contains the topic’s expected frequency across a corpus, which is

the mean proportion of words across the documents that are assigned to this topic. Fur-

thermore, the Topic Page displays the topic’s semantic coherence score, a measure of the

topic’s fit within documents, where larger numbers indicate a better fit (Mimno et al.,

2011).

Below the expected frequency and semantic coherence scores, the browser displays

the top words in context as in Gardner et al. (2010). For each top word, there is a sample

from one of the documents with a high proportion of words assigned to the specific topic
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Figure 10: ANES Structural Topic Model Browser Index Page

Figure 11: Topic Page for Topic 15
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Figure 12: Top of the Topic Page for Topic 23

and with high incidence of the specific word. This sample presents the word in bold,

with forty characters to each side, and the document listed to the right. This allows the

user to connect the top words in the topic to an instance in which this has been used.

Figure 12 shows the top of the Topic Page for topic 23, including the context section. The

topic’s top two words are ‘president’ and ‘black’, and we see in the context two documents

describing how the participants specifically voted for a black president.

After the words are presented in context, we present the top 25 documents by the

proportion of words assigned to this topic. Each document name is also a link to that

document’s page. This allows the user to see roughly the level at which documents

that use this document heavily pick words from this topic, as well as providing links to

the individual document pages, described below. Figure 13 shows the ‘Top Documents’

section of the Topic Page for topic 23.

The last element on the topic page Topic Page is a set of graphs of the documents’

expected topic proportions plotted against the covariate values for that document. This

allows the user to visualize how the covariate impacts the topic’s fit to individual document

and to spot any patterns for further analysis. Figures 14 show the covariate plot for topic

23 with respect to the Age.

Each document has its own page, linked to by the Topic Pages. The Document Page

contains a list of the Top 10 topics associated with this document, the proportion of words
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Figure 13: Top Documents for Topic 23

Figure 14: Age Covariate, Topic 23
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Figure 15: Document 1586

in the document assigned to that topic, and the topic n words in that topic. Below, the

browser displays the entire text of the document. Figure 15 is an example of a Document

Page from the ANES topic model. Document 1586 scores highly in Topic 15, described

above. We see from the text and topic fit, particularly the use of topic 12, that this is an

example of a conservative response to the ANES questions.

Overall, the Structural Topic Model Browser provides a way for the user to use the

output of the topic model to explore the relationship between text and the covariates.

By mixing graphical representation, samples from the original texts, and quantitative

measures of fit, the browser facilitates broader understanding of the analysis and intuitive

ideas about patterns observable in the text.
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1.3.4 Mediation Analysis

The output of the structural topic model can easily be combined with standard analysis

techniques. In this section we show how this can be done with mediation analysis, though

we stress that this application does not jointly estimate all parameters which would be

useful future work. In this application we examine how ex-post strategy choice descrip-

tions mediate the relationship between Rand et al. (2012)’s experimental intervention of

encouraging intuitiveness or deliberation. In particular, for every subject we know their

treatment assignment, their explanation of strategy choice, and their contribution. We

can then take their explanation of their strategy choice and analyze it using the STM,

utilizing the information we know about their treatment assignment. Then, for each sub-

ject, we have an estimate of θ for each of the topics (proportion of words from that topic).

We can then apply standard mediation analysis using this θ as the mediator.

To conduct the mediation analysis we utilize the mediation package in R. This en-

tails fitting two parametric models. The first is a regression of the topic representing

intuitive thinking on the treatment condition. The second is a regression of normalized

contributions (0, 1) on both the treatment and the intuitive topic proportion. We expect

the mediation effect to be positive, with the treatment positive impacting the intuition

topic, and the intuition topic positively influencing contributions. Use of a tobit model

for the contributions equation produced similar results.

Table 16 presents the average causal mediation effect along with 95% confidence

intervals. We observe a positive mediation effect of approximately .09. An alternative form

of analysis could use the open ended text that respondents wrote when first responding

to the encouragement to write about an intuitive topic. This would avoid the problem of

using ex-post rationalizations as a mediating variable.
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