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In examining the diffusion of social and political phenomena like regime transition, conflict, and policy change, scholars
routinely make choices about how proximity is defined and which neighbors should be considered more important than
others. Since each specification offers an alternative view of the networks through which diffusion can take place, one’s
decision can exert a significant influence on the magnitude and scope of estimated diffusion effects. This problem is
widely recognized, but is rarely the subject of direct analysis. In international relations research, connectivity choices are
usually ad hoc, driven more by data availability than by theoretically informed decision criteria. We take a closer look at
the assumptions behind these choices, and propose a more systematic method to asses the structural similarity of two or
more alternative networks, and select one that most plausibly relates theory to empirics. We apply this method to the
spread of democratic regime change and offer an illustrative example of how neighbor choices might impact predictions
and inferences in the case of the 2011 Arab Spring.

Who are a country’s neighbors? On a gut level, the
answer might seem obvious: A country’s neighbors are
the ones closest to it. Yet, choosing an appropriate prox-
imity measure can be a difficult task and one that can
influence empirical findings in decisive ways (Stetzer
1982; Bavaud 1998; Anselin 2002; Lee 2009). A growing
literature in international relations has highlighted the
importance of geographical proximity to the diffusion of
social and political phenomena, such as regime transi-
tions (Starr 1991; O’Loughlin, Ward, Lofdahl, Cohen,
Brown, Reilly, Gleditsch, and Shin 1998; Gleditsch and
Ward 2000; Starr and Lindborg 2003; Gleditsch and Ward
2006), conflict (Murdoch and Sandler 2002; Salehyan
and Gleditsch 2006; Buhaug and Gleditsch 2008; Gled-
itsch, Salehyan, and Schultz 2008; Salehyan 2008), foreign
economic policies (Simmons and Elkins 2004), bilateral
investment treaties (Elkins, Guzman, and Simmons
2006), defense policies (Barkley 2008), government
expenditure (Lee and Strang 2006), and capital taxation
(Cao 2010).2

Most studies define proximity by shared borders, dis-
tances between capitals, or some combination of the two.
Others insist that the connective structure of the interna-

tional system is not necessarily geographic and is based
instead on mutual participation in institutions like trade,
intergovernmental organizations, and alliances (Cao
2009; Greenhill, Mosley, and Prakash 2009; Cao 2010;
Greenhill 2010; Lazer 2011; Strebel 2011). Yet, few guide-
lines exist as to which network specification fits a particu-
lar type of research question, or—once a theoretically
appropriate measure is identified—how one’s choice
might influence one’s results.

This gap is consequential for both academic research
and policy analysis. Diffusion has long been a fundamen-
tal concept in foreign policy decision making: from the
‘‘domino theory’’ of communist expansion during the
Cold War, to more recent debates about the spread of
democracy in Eastern Europe, and the potential spillover
of protests and revolutions across the Arab world.3 In
order to accurately model and predict these and other
diffusion processes, it is essential to first make sense of
what we mean by space, proximity, and the connections
between states.

In international relations, connectivity choices (what
constitutes a neighbor) and spatial weights (how neigh-
bors affect each other) are often assumed without theo-
retical justification. The sensitivity of results to these
assumptions is widely acknowledged, but most attempts at
a systematic investigation in an international relations
context have been limited to differences within these
choices rather than between them. For instance, there have
been several notable studies of sensitivity across different
distance thresholds or different fixed numbers of neigh-
bors (O’Loughlin and Anselin 1991; Gleditsch and Ward
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2008, Cao 2010; Plümper and Neumayer 2010; Seldadyo,
Elhorst, and De Haan 2010).4 While within-measure sensi-
tivity is important, it becomes relevant only after one
answers more fundamental questions of what topological
space the units occupy, how distance is defined on that
space, and what criterion is used to translate these dis-
tances into pairwise ties. Each choice offers a distinct view
of the networks through which diffusion can take place,
and it can be difficult to assess which specifications are
interchangeable and which are not. In this paper, we
endeavor to frame the problem, and propose a proce-
dure to adjudicate between competing definitions of
neighborhood. In contrast to the current norm of impos-
ing an arbitrary network specification ex ante, we recom-
mend a theoretically informed enumeration of multiple
candidates, followed by an ex post evaluation of their
structural similarity and relative statistical and predictive
performance.

Our paper is organized as follows. First, we review how
diffusion has been treated in recent international rela-
tions studies. Second, we introduce the Conflicting
Neighbor Problem and how it manifests itself in practice.
We then propose a three-step solution to the problem
and apply it to a reanalysis of a prominent model of dem-
ocratic diffusion (Gleditsch and Ward 2006) and a simu-
lation of the 2011 Arab Spring.

Diffusion in International Relations

There have been two primary applications of spatial data
analysis to international relations research. The first, and
most common, approach has been to relate proximity to
the properties of dyads, such as the level of bilateral
trade, cooperation or the incidence, and duration of mili-
tarized disputes and other forms of conflict.

In international political economy, proximity is often
used as a component variable in a gravity model, where
bilateral trade flows are modeled as a function of the rel-
ative sizes and distances between two units (Gowa and
Mansfield 2004; Goldstein, Rivers, and Tomz 2007). In
international security, proximity is often incorporated
into opportunity ⁄ willingness models of conflict, where
proximate states are expected to be more willing to go to
war with each other, while opportunities to engage in
conflict are expected to decline with distance (Siverson
and Starr 1991; Starr and Thomas 2005). The most fre-
quently used measure of proximity in this literature is
border contiguity (Beck, King, and Zeng 2000; Lemke
and Reed 2001; Gartzke, Li, and Boehmer 2001; Leeds
2003; Reiter and Stam 2003; Rasler and Thompson
2006), while some studies also include ordinal contiguity
‘‘scores’’ (Slantchev 2004), centroid-to-centroid distances

(Goldstein et al. 2007), and capital-to-capital distances
(Chiozza 2002; Clark and Regan 2003; Dorussen 2006;
Krustev 2006).5 While voluminous, most of this literature
treats geography as a control variable of only secondary
theoretical interest.

The second application—and the focus of our current
study—is diffusion, a concept that grounded the notion
that ‘‘everything is related to everything else, but near
things are more related than distant things’’ (Tobler
1970). Unlike the dyadic trade and conflict literature, dif-
fusion studies typically treat spatial dependence as the
quantity of central interest. Here, social and political phe-
nomena are seen as clustering in space, and the individual
characteristics of a state are expected to exhibit some simi-
larity to those of its neighbors (that is, a country located in
a democratic region is more likely to become a democracy
than one located in an autocratic region). To estimate the
magnitude and scope of spillover effects, scholars in this
field often employ a spatially lagged dependent variable,
such as the average level of democracy in neighboring
states or a binary indicator that at least one neighbor is
experiencing a civil war.6 This field has been quite hetero-
geneous in its network specifications: authors have identi-
fied neighbors by common borders (Starr and Lindborg
2003; Simmons and Elkins 2004; Barkley 2008), length of
borders (Murdoch and Sandler 2002), intercapital dis-
tances (Lee and Strang 2006; Bach and Newman 2010),
regional fixed effects (Pevehouse 2002), and common bor-
ders with a ‘‘snap distance,’’ which allows boundary points
to be a short distance from one another rather than
directly contiguous (Gleditsch and Ward 2000, 2006; Beck,
Gleditsch, and Beardsley 2006; Buhaug and Gleditsch
2008; Salehyan and Gleditsch 2006; Gleditsch et al. 2008).

Rarely, however, are neighbor definitions and their
respective tuning parameters—such as the number of
neighbors included in the lagged term or the extent of the
snap distance—motivated by theoretical considerations
about the networks through which a particular type of dif-
fusion takes place. A theoretically informed choice rests on
one’s answers to two questions. First, what signal must be
transmitted for a particular type of diffusion to take place? For
the contagion of civil war, this might be combatants, ethnic
kin, or refugees. For the diffusion of policy, this might be
information about successful practices or norms. Second,
what is the network through which this signal is most likely to tra-
vel? If we assume signals to follow lowest-cost paths, we
might expect weapons traffickers to choose illegal border
crossing over commercial air travel from capital to capital,
though the opposite may be true for diplomats and acti-
vists. Further still, we might believe that the pathways of
certain types of diffusion are not geographic at all (Beck
et al. 2006). Any pairwise relationship can in principle be
seen as a measure of proximity. Ethic or cultural ties (Sim-
mons and Elkins 2004), bilateral trade (Greenhill et al.
2009), joint membership in intergovernmental organiza-
tions (Cao 2009; Greenhill 2010), and military alliances
(Hammarstrom and Heldt 2002) are just four examples
among many.7 Some of these networks surely overlap;

4 It is worth clarifying our contribution in the context of three of these
studies. Cao (2010) offers an excellent applied example of many of the recom-
mendations that we independently developed. He tests the sensitivity of dis-
tance thresholds, and experiments with non-geographic measures of distance
in pursuit of his substantive point. Whereas his focus on taxation is primary
with an ancillary focus on general practice, we are primarily interested in gen-
eral practice with a substantive example for demonstration purposes. The
Gleditsch and Ward (2008) monograph provides a very useful reference on
the estimation of spatial methods. It, however, does not give much practical
advice on the theoretical choices necessary for estimation, which is our focus
here. Plümper and Neumayer (2010) provide an excellent overview of the
specification of spatial models. We strongly believe all three of these pieces
should be read in concert by the applied researcher looking to use spatial
models.

5 The Correlates of War definition of contiguity—the one used most fre-
quently in this literature—provides five levels of contiguity: direct land conti-
guity and four levels of contiguity by water (Stinnett, Tir, Schafer, Diehl, and
Gochman 2002).

6 A spatially lagged variable is the cross-product of the weights matrix W
and a vector of observed values y. It can be interpreted as a weighted sum of
neighboring values.

7 For a different approach to network methods in IR, see Hafner-Burton,
Kahler, and Montgomery (2009).
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others may represent separate and independent pathways.
How might one assess the degree of similarity between
these measures and arbitrate between them in a systematic
way?

The Conflicting Neighbor Problem

A network specification is the outcome of three decisions:
(i) the choice of a topological space, (ii) the choice of a dis-
tance or proximity function defined on that space, and (iii)
the choice of a connectivity criterion for the distance met-
ric. The Conflicting Neighbor Problem (CNP) lies in the
uncertainty of this network specification process. More
than one type of topological space may contain the same
set of objects; more than one distance function may be
defined on the same space; more than one connectivity
criterion may be defined for the same distance metric.
Even in a relatively simple applied setting like IR, where
the universe of objects is well defined and the relations
between them well catalogued, permutations of these
three choices are potentially innumerable. This uncer-
tainty—and the resulting potential for conflict and over-
lap between specifications—can render elusive the goal
of identifying the ‘‘true’’ network of diffusion.

Consider a set of n objects, in our case states in the
international system. The topological space S occupied by
these objects may be a geographical map, a Cartesian
coordinate system, a network of international trade, or
any other set for which a notion of distance between
objects can be defined. Given S, we may define a distance
function d, which satisfies the following metric properties
for all i,j,k 2 S: d(i,j) ‡ 0 (non-negativity), d(i,j) = d(j,i)
(symmetry), d(i,i) = 0 (reflexivity), and d(i,j) £ d(i,k) +
d(k,j) (triangular inequality). The distance function d
provides a measure of the ‘‘nearness’’ of two objects situ-
ated in space S, such that d(i,j) approaches zero as two
objects move closer together and infinity as they move
farther apart. Alternatively, we may define a proximity
function p(i,j) on S, which approaches a constant as two
objects move closer together and zero as they move far-
ther apart.8 The number of kilometers between capital
cities would be one distance metric in geographical
space; the volume of bilateral trade would be a proximity
measure in international economic space.

Connectivity criteria link the distance or proximity
functions to some categorical definition of neighbor-
hood. In a simple thresholding case with search radius r,
a connectivity criterion may be d(i,j) < r (for example,
two countries are connected if the distance between their
capitals is less than r km) or p(i,j) > r (for example, if the
volume of bilateral trade is greater than r dollars).

Pairwise connections between objects are expressed
with an n · n connectivity matrix C, where a cell
c(i,j) = 1 if objects i and j are ‘‘connected’’ according to
some connectivity criterion c, and c(i,j) = 0 otherwise.

The CNP occurs when, for the same pair of objects i,j
and two or more network specifications m 2 M, the two
objects are considered neighbors under one specification,
but not the other. Given two network specifications
m = 1, 2, their respective graphs are said to be in perfect
conflict if c1(i,j) „ c2(i,j) for all i, j 2 {1,…,n}, and in per-

fect agreement if c1(i,j) = c2(i,j) for all i, j 2 {1,…,n}. They
are in partial conflict (or agreement) if both c1(i,j) „ c2(i,j)
and c1(i,k) = c2(i,k) are true for some i, j, k 2 {1,...,n}.

Cases of perfect conflict and agreement, although rare,
are fairly straightforward. In the former, the graphs con-
structed from C1 and C2 are complements of each other,
as in the case of countries with and without shared bor-
ders, or allied and nonallied relationships. In the latter,
the graphs are isomorphic, and one might be justified in
assuming that the specifications 1 and 2 represent the
same theoretical concept. In each case, C1 and C2 are
highly dependent on one another; knowing whether a
connection exists between i and j in C1 allows us to per-
fectly predict whether the same pairwise tie exists in C2.
The key difference lies in the interpretation of spatial
dependence. If two graphs are in perfect conflict, positive
spatial autocorrelation detected in one graph appears as
negative autocorrelation in the other—diffusion becomes
repellence, clustering becomes segregation.

Partial conflict or agreement is a more ambiguous case.
Here, matrices C1 and C2 partially overlap and represent
potentially related networks, though not necessarily ideal
substitutes. The structural similarity between the graphs
can vary from very high—approaching that of perfect
conflict or agreement—to negligible—where the graphs
represent connections in unrelated types of networks. In
IR, most interstructural relationships reside in this murky
domain. Border contiguity may or may not correlate with
intercapital distance, labor migration may or may not cor-
relate with bilateral trade, and so on. Due to the variety
of ways in which connectivities can be specified, even net-
works situated in different types of topological space may
be more structurally similar than those that share the
same space and distance metrics.

Finding the ‘‘True’’ Network: A Monte Carlo Study

What are the consequences of the CNP for empirical
research? As we demonstrate below using Monte Carlo
simulation, network misspecification can result in biased
spatial autocorrelation estimates, poor model fit, and
inaccurate predictive performance. Use of a specification
in partial conflict or agreement with the true graph signifi-
cantly increases the risk of Type II errors: A genuine pro-
cess of diffusion is left undetected. Use of a specification
in perfect conflict all but guarantees a Type ‘‘S’’ error (Gel-
man and Tuerlinckx 2000): A genuine process of diffu-
sion is mistaken for a process of repellence.9 We propose
a three-step method to approach the network specifica-
tion process and arbitrate between multiple candidates in
a systematic way.

In modeling the process of diffusion, the binary graph
Cm is typically transformed by row standardization or
some measure of decay into a spatial weight matrix Wm,
which governs how neighbors influence each other (for
example, competitively, cumulatively, in inverse propor-
tion to distance). The cross-product of Wm and the
dependent variable vector y is the spatial lag Wmy, which
can be interpreted as a weighted sum or average of
neighboring values of y. In the simple case of cross-sec-
tional data with a normally distributed dependent vari-
able, we can model the diffusion process with a spatial
autoregressive (SAR) model:8 Assuming for illustrative purposes a normalized distance bounded by

the unit interval 0 £ d(i,j) £ 1, we can define the relationship between dis-
tance d and proximity p as d(i,j) = 1-p(i,j). Although some of the inequalities
are flipped, the same metric space properties obtain as before: p(i,j) ‡ 0 (non-
negativity), p(i,j) = p(j,i) (symmetry), p(i,i) = 1 (reflexivity), and p(i,j) ‡ p(i,k)
+ p(k,i) - 1 (triangular inequality).

9 Gelman and Tuerlinckx (2000) defines Type ‘‘S’’ (for sign) errors as fal-
sely ‘‘claiming that h1 > h2 when in fact h2 > h1’’.
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y ¼ qmWmy þ Xbþ e ð1Þ
¼ ðI� qmWmÞ�1Xbþ ðI� qmWmÞ�1e ð2Þ

e ¼ N ð0; 1Þ
which resembles an ordinary least squares (OLS) regres-
sion with the addition of the lagged term and the spatial
autocorrelation coefficient qm .10 Although many IR appli-
cations, including the one considered below, call for
more complex models to accommodate longitudinal data
and categorical dependent variables, the basic intuition is
the same. The outcome y is modeled as a function of the
linear predictor on the right side of the equation, which
includes outcomes in neighboring units Wmy, a set of
exogenous covariates X, and an independent error term
e.

An underlying assumption of the SAR model is that
the matrix Wmy captures the one ‘‘true’’ network of diffu-
sion, through which the observed data were generated.
In most empirical research, however, this ‘‘true’’ connec-
tive structure is almost always unobserved. Misspecifica-
tion of this structure has been shown to generate
inconsistent parameter estimates and misleading conclu-
sions (Anselin 2002; Fingleton 2003; Lee 2009).

Suppose, however, that we have two or more compet-
ing proximity measures m = 1, 2 (say, border contiguity
and some critical level of bilateral trade). We would
like to know which of these is closer to the ‘‘truth,’’ so
as to include it in the SAR model. The conventional
approach of spatial econometrics has been to treat net-
work specification as a variable or model selection
problem:

1. Strength of autocorrelation (qm): One fits a model
for each matrix (W1, W2), examines whether
the respective autocorrelation coefficients (q1,
q2) are statistically different from what we
would expect by chance, and selects the model
where the strength and significance of the spa-
tial dependence is greatest. This procedure has
a long history in theoretical and applied work
on spatial econometrics. Kooijman (1976) pro-
posed matrix selection by maximization of the
Moran’s I autocorrelation coefficient, while
O’Loughlin and Anselin (1991, 42-44) selected
among multiple connectivity matrices by exam-
ining the relative size and significance of a gen-
eral cross-product measure of spatial
association.

2. Goodness-of-fit diagnostics for non-nested models:
One selects a model that minimizes a statistic,
like Akaike information criterion (AIC) or
Bayesian information criterion (BIC), which
balances an analysis of deviance with a penalty
for model complexity. Although log-likelihood
and similar diagnostics are general model selec-
tion tools, spatial econometricians have also rec-
ommended their use as criteria for the
selection of spatial weight matrices (Anselin
2002; Lee 2009).

3. Cross-validation: Each model is esti-
mated—repeatedly—on a random subset of
data, and its predictive performance is evalu-
ated on previously unseen out-of-sample data.
This procedure is a popular check against over-
fitting in a wide class of models (Ward, Green-
hill, and Bakke 2010) and is occasionally
applied to the selection of connectivity criteria
in spatial econometrics (Ertur, Gallo, and Le-
Sage 2007).

Beyond these three, a range of other procedures has
been proposed by spatial econometricians, such as esti-
mating spatial weights matrices based on an observed pat-
tern of spatial dependence (Bhattacharjee and Jensen-
Butler 2005), Bayesian model comparison (Holloway and
Lapar 2007), Bayesian model averaging (LeSage and Par-
ent 2007), and component-wise boosting algorithms (Kos-
tov 2010). Because most of these procedures are
restricted to highly specialized classes of spatial models,
we limit our attention to the three more general selection
approaches listed here.

To assess the relative performance of these proce-
dures in addressing the CNP, we performed a series of
Monte Carlo experiments in which models were esti-
mated using 1,000 random graphs, each with a differ-
ent degree of structural similarity to the one ‘‘true’’
network of diffusion. The true network (C, row-normal-
ized as W) was assumed to be the most commonly used
measure in international relations: border contiguity.
The data-generating process was based on the SAR
model as defined in (2): the X matrix included an
intercept term and a normally distributed random vari-
able, the b vector consisted of the arbitrary coefficients
[.01; 4], and the true autoregressive parameter q was
evaluated at an arbitrary value of .1, indicating weak
positive autocorrelation.

Based on our knowledge of the ‘‘true’’ network, we
generated 1,000 random graphs with varying degrees of
structural similarity to W. To determine the degree of
conflict or agreement between the competing proximity
measures, we relied on an edge-set comparison diagnos-
tic called graph correlation (Krackhardt 1987, 1988;
Butts and Carley 2001, 2005).11 Each full set of connec-
tivities (the matrix Cm) was treated as a random vari-
able, given that each matrix was built on the same set
of objects (countries), and that the dimensions and
ordering of rows and columns were identical.12 For
each Cm, we began by calculating the graph mean, lm,
understood as the expectation of a uniform draw from
the matrix. For the binary connectivity matrices consid-
ered here, lm could be interpreted as the graph’s den-
sity, or proportion of existing connections relative to
the total number possible, n(n-1) ⁄ 2. With this informa-
tion, we calculated the covariance between two graphs
C1 and C2:

10 Estimation can be accomplished with maximum likelihood. The SAR
model has a full log-likelihood of the form

ln L ¼ �n=2 lnðpr2Þ þ ln jI� qmWm j � ðe0eð=2r2ÞÞ
e ¼ ðI� qmWm Þ�1y � Xb

11 While alternative techniques have been proposed for this purpose—for
example, graph-level indices, algebraic, and model-based methods—a direct
comparison of the full sets of pairwise connections, or edges, enables us to
evaluate correspondence between structures more efficiently and with no para-
metric assumptions.

12 For the more complicated case where permutations are allowed, see
Butts and Carley (2001).
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gcovðC1;C2Þ ¼
1

nðn � 1Þ
Xn

i¼1

Xn�1

j¼1

c1ði; jÞ � l1ð Þ c2ði; jÞ � l2ð Þ

ð3Þ
and the variance of each graph, which is simply the
covariance of the graph with itself:

gvar ðC1Þ ¼
1

nðn � 1Þ
Xn

i¼1

Xn�1

j¼1

c1ði; jÞ � l1ð Þ2 ð4Þ

The graph correlation coefficient gcor could then be
computed as:

gcor ðC1;C2Þ ¼
gcovðC1;C2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gvar ðC1Þgvar ðC2Þ
p ð5Þ

Graph correlation has an interpretation analogous to
the common Pearson product-moment correlation coeffi-
cient. In the context of the Conflicting Neighbor Prob-
lem, a value of -1 indicates that two graphs are in perfect
conflict, a value of +1 indicates that they are in perfect agree-
ment. Values between these extremes indicate partial con-
flict (-1, 0) or partial agreement (0,1).

For each of the m 2 {1,...,1000} random graphs Cm,
with gcor(C, Cm) 2 ()1; 1), we row-normalized the matrix
to create Wm, fit the model in (1) using maximum likeli-
hood, and recorded the autocorrelation parameter esti-
mate (q̂m), its standard error (SE[q̂m]), and the model’s
AIC and BIC statistics. We also performed repeated ran-
dom subsampling cross-validation and reported the mean
RMSE and 95% confidence interval for each of the 1,000
graphs.13

The results of the Monte Carlo study are shown in
Figure 1. The horizontal axis in each plot displays the
graph correlation of each Cm with the true matrix C. The
vertical axes report statistics corresponding to the three
model selection criteria of statistical significance, good-
ness-of-fit, and cross-validation: [1a] spatial autocorrela-
tion parameter estimates (points) and 95% confidence
intervals (gray vertical lines), relative to 0 (dashed line)
and the true value (gray horizontal line), [1b] AIC statis-
tics (points), and [1c] out-of-sample RMSE means
(points) and 95% confidence intervals (gray lines).

1. Strength of autocorrelation: As shown in Figure 1a,
the autocorrelation estimate q̂ converges to the
true value (q = 0.1) as gcor approaches 1. If one
were to select a model based exclusively on the
size and significance of the coefficient, however,
a graph in perfect conflict (gcor = )1) would be
as likely a choice as one in perfect agreement
(gcor = 1). Due to an inability to distinguish
between conflict and agreement, the signifi-
cance criterion does little to avert the risk of
mistaking diffusion for repellence—a Type ‘‘S’’
error, in the terminology of Gelman and Tuer-
linckx (2000). If the candidate network is mis-
specified such that it has only negligible
overlap with the true graph (gcor is close to 0),

confidence intervals cover the origin and Type
II errors become likely.

2. Goodness-of-fit: As shown in Figure 1b, informa-
tion criteria like AIC and BIC do a far better
job of adjudicating between graphs positively
and negatively correlated with the true net-
work.14 However, this advantage is most pro-
found only in cases of near-perfect agreement,
where gcor > .8. Elsewhere, as in cases of partial
and perfect conflict, the relationship between
graph correlation and AIC is concave. While a
graph with gcor = 0.6 is more likely to be
selected than one with gcor = 0.4, so too would
a graph with gcor = )0.6, even though the
gcor = 0.4 graph is in fact closer to the ‘‘truth.’’

3. Cross-validation: As shown in Figure 1c, out-of-
sample prediction diagnostics also exhibit a
concave relationship with graph correlation.
Like AIC, RMSE performs quite well for graphs
in near-perfect agreement with the true net-
work: A graph with gcor = 0.99 predicts out-
comes in out-of-sample data with considerably
greater accuracy than a graph with gcor = )0.99.
For most graphs in the middle, however, higher
prediction accuracy is an indication of the scale
of correlation with the true network, not the
direction of that correlation.

Assuming that researchers have an interest in the sub-
stantive meaning of spatial dependence, in addition to its
mere presence or absence, there is a point at which the
utility of model fit diagnostics ends and the importance
of theory begins. The ambiguity of the three diagnostics
lies in the fact that—outside of extreme cases—none of
them can effectively eliminate the risk of Type ‘‘S’’ error.
Since diffusion implies positive spatial autocorrelation,
however, we can potentially impose a strong prior on the
sign of qm, restricting our search to the sections of Fig-
ure 1 where gcor ‡ 0. Since model fit and cross-validation
statistics are monotonic in this region, the model selec-
tion exercise would be vastly simplified.

A Three-Step Procedure

We propose a simple procedure to choose among multi-
ple sets of neighbors:

• First step: Network specification. Define the set of
plausible networks for a given set of units. For
each network, define (i) the space the objects
occupy, (ii) the measure of distance between
them, and (iii) the connectivity criterion used
to distinguish between neighbors and non-
neighbors.

• Second step: Diagnostics. Examine pairwise corre-
lations between the graphs. If any of the corre-
lations are negative, use a theoretically
informed prior about the direction of spatial
dependence to reduce the set of graphs to only
those positively correlated with each other. Esti-
mate the model with each graph. Use a combi-
nation of parameter-level (significance) and
model-level diagnostics (goodness-of-fit, cross-

13 For each of the 1,000 graphs, we calculated the spatially lagged depen-
dent variable using Wm, randomly selected 90% of the data into a training set
and 10% into a validation set, and ran a SAR model on the training data. We
then used the model’s parameters to calculate predicted values for the valida-
tion set and recorded the root-mean-squared error (RMSE) for these out-of-
sample predictions. We repeated this procedure with 100 random partitions
of the data and averaged RMSE statistics over these 100 runs.

14 Because the number of parameters was the same across the 1,000 mod-
els, AIC and BIC results were almost identical. For this reason, only the for-
mer are reported in Figure 1.
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validation) to eliminate candidate graphs that
bear little or no structural resemblance to the
true, unobserved network. These include
graphs that produce insignificant autocorrela-
tion parameters, and models with relatively
high deviance statistics and poor predictive per-
formance.

• Third step: Simulation. If more than one graph
survives the second step, use simulation to illus-
trate the empirical implications of the best-per-
forming theories. This involves the
disaggregation of diffusion effects into specific
counterfactual predictions of the sort: ‘‘If a
change occurs in unit i, how will it influence
some outcome in unit j given network structure
m?’’

Each of the three steps is guided by theoretical consid-
erations—about the universe of graphs to be considered,
about the direction of dependence and the specification
of the diffusion model itself, about the counterfactual
scenario to be simulated. This procedure is illustrated
below for a famous empirical example from international
relations: the spread of democracy. The Conflicting
Neighbor Problem here lies in the uncertainty of the net-
work through which political regime change can spread,
and the structural overlap between candidate networks,
which include several common geographic and nongeo-
graphic measures of proximity.

Application: The Spread of Democracy

In ‘‘Diffusion and the International Context of Democra-
tization,’’ Kristian Gleditsch and Michael Ward argue that
international factors can exert a strong influence on the

prospects and durability of transitions to democracy
(Gleditsch and Ward 2006). Pointing to patterns of geo-
graphic clustering in the global distribution of demo-
cratic regimes and transitions to democracy, the authors
argue that democratic regimes are more likely to emerge
and endure in regions with a high proportion of neigh-
boring democratic states, and that regime transitions
tend to impart a regional convergence.15

The magnitude of democratic ‘‘spillover effects,’’ how-
ever, may be highly dependent on one’s choice of net-
work. Specifically, what signal needs to be transmitted for
the diffusion of democracy to take place, and what are
the pathways through which the signal is likely to travel?
The authors write, ‘‘one can think of diffusion in terms
of how linkages to external actors and events influence
the relative power and the likely strategies and choices of
relevant groups in struggles over political institutions and
outcomes’’ (Gleditsch and Ward 2006, 918). By this state-
ment, the signal that must be transmitted appears to be
information—about the utility of various political institu-
tions, about the costs, benefits or perceived probability of
regime change, about successful or failed strategies for
political reform. The authors capture this process with a
network of geographically contiguous states. As we dem-
onstrate below, however, these signals can conceivably be
transmitted through a number of different pathways.

Step 1: Enumeration of Network Specifications

As a first step in our reanalysis, we begin by specifying
the set of networks to be considered as potential path-
ways of diffusion. Because categories of international

A B

C

FIG 1. Structural similarity and model selection. Plots show results of Monte Carlo simulation with 1,000 random graphs. Horizontal axes
in each plot display the graph correlation of each graph Cm with the true matrix C. The vertical axes report statistics corresponding to [1a]

spatial autocorrelation parameter estimates, [1b] AIC statistics, and [1c] out-of-sample RMSE means.(a) Strength of autocorrelation.(b)
Goodness-of-fit. (c) Cross-validation.

15 Background on the Gleditsch and Ward (2006) model is provided in
the Appendix.
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networks are quite broad and encompass a wide variety of
possibilities, we limit our survey to six distance metrics
defined on geographic and nongeographic space: [1] in-
terborder distance, [2] intercapital distance, [3] ethnic
ties, [4] bilateral trade, [5] intergovernmental organiza-
tions, and [6] military alliances. An overview of their for-
mal definitions and substantive assumptions is provided
below.

1. Interborder distance (geographic space): Let Bi be
the set of boundary points on polygon i (that
is, the political borders of a country), and let bi

be an element of Bi (that is, the coordinates of
a single boundary point). Similarly for Bj. The
interborder distance between i and j is defined
as the minimum distance between all pairs of
boundary points on each polygon:

dði; jÞ ¼ min
bi2Bi ;bj2Bj

dðbi ; bjÞ

Assuming that a signal can be transmitted by
cross-border movements of people and goods,
a shorter distance between the political borders
of two countries is expected to reduce the costs
of transmission. This is the metric used by
Gleditsch and Ward (2006) in their original
analysis.

2. Intercapital distance (geographic space): Let (xi, yi)
be the Cartesian coordinates of the capital city
of country i. Similarly for (xj, yj). The intercapi-
tal distance between i and j is defined as the
Euclidean distance between these points:

dðijÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q

Assuming that a signal can be transmitted by
official travel and political communication, a
shorter distance between the political capitals
of two countries is expected to reduce the costs
of transmission (Lee and Strang 2006; Bach
and Newman 2010).

3. Ethnic proximity (nongeographic space): Let Ei be
the set of unique ethnolinguistic groups resid-
ing within the borders of country i. Similarly
for Ej. The ethnic proximity between i and j is
defined as the number of shared groups that
reside within both countries:

pði; jÞ ¼ jEi \ Ej j
If two countries are home to related ethnic or
linguistic groups, these ethnic and cultural ties
can facilitate the flow of information through
common media markets, interpersonal con-
tacts, or cognitive shortcuts on the appropriate-
ness of a particular political system given a set
of shared values (Simmons and Elkins 2004).

4. Trade proximity (nongeographic space): Let s(i,j)
be the volume of exports from country i to
country j, and let s(j,i) be the volume of
imports to i from j. The trade proximity
between i and j is defined as the sum of these
two quantities:

pði; jÞ ¼ sði; jÞ þ sðj ; iÞ
If two countries are major trading partners,
information may flow through the exchange of
consumer goods or through interpersonal con-

tacts among business elites (Greenhill et al.
2009). Additionally, trade relations may make
countries more responsive to human rights
concerns, labor standards, and other norms of
behavior, particularly if such expectations are
backed by the possibility of positive or negative
trade sanctions.

5. Intergovernmental proximity (nongeographic space):
Let Ii be the set of intergovernmental organiza-
tions (IGOs) in which country i formally partici-
pates. Similarly for Ij. The intergovernmental
proximity between i and j is defined as the
number of IGOs in which the two countries
jointly participate:

pði; jÞ ¼ jIi \ Ijj
If two countries are members of the same inter-
governmental organizations (IGOs), regularized
contacts between political, government, or mili-
tary elites may provide opportunities for inter-
national socialization, where states observe and
mimic the actions of others, defining and inter-
nalizing the norms of behavior condoned by
the larger group (Cao 2009; Greenhill 2010).

6. Alliance proximity (nongeographic space): Let Ai be
the set of collective or mutual defense treaties
of which country i is a signatory. Similarly for
Aj. The alliance proximity between i and j is
defined as the number of alliances involving
both countries:

pði; jÞ ¼ jAi \ Aj j
Like IGOs, alliances provide a forum for elite
socialization—through common military stan-
dards, training, doctrines, weapons systems, and
missions (Hammarstrom and Heldt 2002).
Unlike many IGOs, alliances are typically smal-
ler, more exclusive communities, with more
robust means to monitor compliance and pun-
ish those who deviate, as evidenced by the War-
saw Pact’s interventions to prevent democratic
liberalization in Hungary in 1956 and Czecho-
slovakia in 1968.

One reason for the popularity of geographical
distances in IR research is the assumption that exogeneity
is automatically ensured: the physical locations of cities
and borders are relatively static and often causally prior
to the diffusion process under consideration (Kostov
2010). The same cannot always be said of nongeographic
space. The endogeneity of international regimes and
institutions has been the focus of a vast body of research
(Keohane 1988; Simmons and Martin 2001), as have
problems of homophily and endogeneity in network for-
mation more broadly (McPherson, Smith-Lovin, and
Cook 2001, Shalizi and Thomas 2011). Although great
care should always be taken in drawing causal inferences
from models based on nongeographic measures of dis-
tance and proximity—and an adequate treatment of their
identification lies outside the scope of our paper—there
are equally compelling reasons to include these metrics
in our survey.

First, the two types of space often overlap. Intergovern-
mental organizations and alliances are often regional in
focus; trade is less costly when conducted between geo-
graphic neighbors; ethnic groups cluster geographically.

277Yuri M. Zhukov and Brandon M. Stewart



While justifications for network specifications are rarely
explicit, the prominence of border contiguity in IR is
unlikely due to the plausibility of the assumption that
politically relevant information can only be transmitted
by cross-border movements. Intentionally or not, our
interpretation of geographical space is already imbued
with political meaning. If we insist on maintaining a con-
ceptual separation between geographic and nongeo-
graphic space, the structural distinctions between these
two classes of networks should be measured rather than
assumed.

Second, the current direction of diffusion research dic-
tates that model comparisons be carried out across,
rather than just within particular types of topological
space. While some studies are more careful about identifi-
cation challenges than others, scholars are increasingly
moving past geography to indicators of actual political,
cultural, and economic communication (Beck et al. 2006;
Hafner-Burton et al. 2009; Greenhill et al. 2009; Cao
2010; Greenhill 2010). The increasing attention on non-
geographic space stems from its relatively direct theoreti-
cal appeal. Such relationships are substantively easier to
relate to some of the mechanisms associated with certain
types of diffusion: If we are interested in modeling the
adoption of common military technology and doctrine,
joint membership in a military alliance may seem a more
suitable choice than shared borders. A systematic exami-
nation of other types of space is an effort to let theory
drive our measurement choices and not the other way
around.

The challenge that remains is one of comparability:
Each metric is distributed and scaled in a different way,
making direct comparisons difficult. While some relation-
ships, like border contiguity and military alliances, are
directly translatable into connectivities, others are contin-
uous (for example, capital-to-capital distance, trade flows)
or cumulative (for example, number of shared ethnic
groups, or the number of intergovernmental organiza-
tions in which two countries jointly participate). In the
latter case, pairwise connections are not immediately
apparent from the raw data. After all, how much bilateral
trade makes two states ‘‘significant trade partners’’? Con-
nectivity criteria provide a consistent way to relate these
metrics to discrete definitions of ‘‘neighborhood,’’ pro-
vided that the resulting binary graphs reflect a quantity
of theoretical interest and approximate the geometry of
the continuous case.16 We consider four connectivity cri-
teria below:

1. Thresholding: Let r be a search radius defined
on space S. Countries i and j are considered
neighbors if they are located within r spatial
units of each other.

cTHRESði; jÞ ¼ 1fi; j 2 S : dði; jÞ � rg ðdistanceÞ
¼ 1fi; j 2 S : pði; jÞ � rg ðproximityÞ

The simplest connectivity criterion imposes some theo-
retically meaningful threshold value on the distance or

proximity metric under consideration. The advantage of
thresholding lies in its simplicity and interpretability.
The disadvantage is that the choice of r is at once arbi-
trary and highly consequential, particularly where the
distribution of objects in space is not uniform: a 500-km
threshold on interborder distance—the criterion used by
Gleditsch and Ward (2006)—means a quite different
thing in Oceania than in Central Europe. An overly con-
servative radius can create a high proportion of neighbor-
less isolates, while an overly expansive one can create a
high number of politically irrelevant connections. This
trade-off entails a host of theoretical and computational
concerns (Bivand, Pebesma, and Gomez-Rubio 2008).

2. Minimum distance: Let r ¼ maxn
i minn�1

j 6¼i d(i, j)
be the maximum first nearest neighbor distance
between all pairs of objects in space S. Coun-
tries i and j are considered neighbors if they
are located within r spatial units of each other.

cMDN ði; jÞ¼ 1fi; j 2 S : dði; jÞ�maxn
i minn�1

i 6¼j dði; jÞg
ðdistanceÞ
¼ 1fi; j 2 S : pði; jÞ�minn

i maxn�1
i 6¼j pði; jÞg

ðproximityÞ
An extreme solution to the ‘‘island’’ problem is the use of
minimum distance connectivities, a special case of thres-
holding that ensures that the most isolated object in the
system will have at least one neighbor and the rest will have
as many neighbors as can be found within the correspond-
ing search radius. The advantage of minimum distance is
that it eliminates the neighborless unit problem encoun-
tered with arbitrary threshold specifications. However, it is
highly inefficient for irregularly spaced units—of which
countries in the international system are an example. In
regions with a high density of units, such as Central Europe
and much of West Africa, an excessive number of connec-
tions results in a high noise-to-signal ratio.

3. k nearest neighbor: Let d(1)(i, -) £... £ d(n)(i, -) be
the order statistics for the distances between
point i and all other points in the set {1,...,n},
and let p(1)(i, -) ‡... ‡ p(n)(i, -) be the order sta-
tistics for the proximities. Countries i and j are
considered neighbors if j is one of the k nearest
neighbors of i.

cKNN ði;jÞ¼1fi;j2S:dði;jÞ�dðkÞði;�ÞgðdistanceÞ
¼1fi;j2S:pði;jÞ�pðkÞði;�ÞgðproximityÞ

Another variety of threshold-based criteria, the k nearest
neighbor criterion, takes into account differences in the
densities of areal units, ensuring that all observations have
the same number of incoming ties, while avoiding much
of the noise associated with minimum distance measures.
One drawback is that k nearest neighbor methods pro-
duce a potentially high number of asymmetric connectivi-
ties (country i is a neighbor of country j but not vice
versa), which may or may not be problematic, depending
on the nature of the phenomenon under study. More cru-
cially, the selection of k may not reflect the ‘‘true’’ level
of a unit’s isolation or connectedness, since the number
of neighbors is uniform across the system.17

16 A number of conventions have been proposed for optimal threshold
selection for valued ties, including rank discrepancy minimization and simula-
tion (Thomas and Blitzstein 2009a). Since any dichotomization can result in a
considerable loss of information, the alternative might be to avoid threshold-
ing altogether, treat all nonzero pairs as neighbors, and settle on a continuous
measure of connectivity like inverse network distance, frequency, or band-
width. Due to the high density of resulting matrices, this approach might itself
entail some computational and theoretical problems. For our purposes,
dichotomization also offers the benefits of consistency and simplicity in mea-
surement, modeling, inference, and prediction.

17 This setup is similar to the ‘‘name k friends’’ procedure in social net-
work data collection, which truncates the sample space of the family of net-
works and has been shown to introduce bias into the estimation of
autocorrelation and network effects (Thomas and Blitzstein 2009b).
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4. Sphere of Influence: Let Oi be a circle centered at
point i, with radius ri = min d(i, -), that point’s
first nearest neighbor distance. Let Oi \ Oj be
the intersection between circles Oi and Oj.
Objects i and j could thus be considered sphere
of influence neighbors whenever Oi and Oj

intersect in exactly two points (Avis and Horton
1985, 323):

cSOI ði; jÞ ¼ 1fi; j 2 S : Oi \ Oj 6¼ [g
ðCartesian coordinate systemÞ

As illustrated in Figure 2, the sphere of influence
graph requires information on the relative placement of
nodes on a geographic or planar coordinate system. For
a more general case, we may reach a naive approximation
with a pseudo sphere of influence criterion, which relies
on the symmetrization of a k=1 nearest neighbor matrix.
Two countries i and j are considered neighbors if either j
is the first nearest neighbor of i or vice versa:

cpSOI ði; jÞ ¼ 1fi; j 2 S : dði; jÞ
¼ dð1Þði;�Þ \ dðj ; iÞ ¼ dð1Þðj ;�Þg
ðgeneral distanceÞ
¼1fi; j 2 S : pði; jÞ¼pð1Þði;�Þ \ pðj ; iÞ ¼ pð1Þðj ;�Þg
ðgeneral proximityÞ

Like k nearest neighbor, the sphere of influence graph
ensures that all units have at least one neighbor and pro-
duces a far sparser matrix than the more noisy minimum
distance specification. This approach is well suited for
irregularly located areal entities: The method does not
require a user-defined parameter like r or k, the number
of connections per unit is variable, and relatively long links
are avoided. The disadvantage is that inferences made
from sphere of influence neighbors are not as immediately
intuitive as in the first three approaches. In international
relations, (pseudo) sphere of influence neighbors tend to
assume relatively few connections per country.

Step 2: Structural Comparisons and Model Diagnostics

Once the list of candidate graphs is enumerated, we may
proceed to construct connectivity matrices based on real

data, and assess the degree of overlap between the specifi-
cations. To facilitate the estimation of geographic net-
works for all country years between 1875 and 1998, we
created a separate ESRI shapefile (polygon-based digital
map) for each year of observation, to account for the
numerous boundary changes, partitions, and unifications
that have taken place over the course of the period of
observation.18 To facilitate estimation of the nongeo-
graphic networks for each year, we constructed graphs
from several dyadic panel data sets, including the Corre-
lates of War Dyadic Trade (Barbieri, Keshik, and Pollins
2009), Intergovernmental Organization (Pevehouse,
Nordstrom, and Warnke 2004), and Alliance (Gibler and
Sarkees 2004) data sets. To construct the ethnic network,
we joined our historical state borders data with the Geo-
Referencing of Ethnic Groups (Weidmann, Kuse, and
Gleditsch 2010a; Weidmann, Rd, and Cederman 2010b)
polygons and computed the number of shared ethnic
groups residing within the borders of each pair of coun-
tries.19

Figure 3 shows the full set of graphs derived from
these specifications. Simple thresholding was used for two
metrics. For interborder distance, we kept Gleditsch and
Ward’s (2006) value of 500 km as the distance separating
the nearest border points of neighboring countries:
cCONT(i, j) = 1{i, j 2 S:mind(bi, bj) < 500}. For alliance
proximity, we assumed that the existence of even one
mutual defense pact was a sufficient threshold to classify
two countries as allies: cALLY(i, j) = 1{i, j 2 S:|Ai \ Aj| > 0}.
For all other metrics, we applied the criteria of minimum
distance, k=4 nearest neighbors, and sphere of influence.

The densest graphs were produced by the minimum
distance criterion, designed to ensure that each country
has at least one neighbor. The sparsest graphs were

FIG 2. Sphere of influence graph. Nodes represent cities, and directed edges (radii of circles) correspond to nearest neighbor distances. Here,
city B is the nearest neighbor of city A, B and C are nearest neighbors of each other, and C is the nearest neighbor of D. Where the circles
around reach city overlap in at least two points, the cities can be considered neighbors. In the current example, A is a neighbor of B and C

but not D, B is a neighbor of A and C, C is a neighbor to all, and D is a neighbor only of C.

18 For a summary of the major changes, see Gleditsch and Ward (2001,
16-17). Since the earlier years in the data set contain many fewer cross-sec-
tional observations than more recent years, dependencies and other nonself-
governing entities were treated as missing data prior to the year of their inde-
pendence. The resulting shapefiles were then joined with Gleditsch and Ward
(2006) data and were used as base maps for the estimation of unique weights
matrices for each calendar year.

19 Unlike the Correlates of War data, which is measured at the level of
dyad-year, the GREG ethnicity data set is based on ethnic boundaries from a
single cross-section from the widely used Soviet Atlas Narodov Mira (1964).
While the ethnic network is nonetheless dynamic, all variation across time is
due to changes in state borders, rather than changes in settlement pat-
terns—the latter of which are assumed constant (Weidmann et al. 2010a,b).
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produced by sphere of influence, which restricted the
search only to the immediate vicinity of each country.
k = 4 nearest neighbors produced some quite asymmetri-
cal connectivities: While each country had at least four
neighbors (incoming ties), there were no restrictions on
how many times a country could be a neighbor to others
(outgoing ties).

What is the degree of structural similarity between
these measures? Figure 4 shows a graph correlation
matrix for the fourteen graphs defined above.20 Almost
all graphs are in partial agreement with each other. The
strongest positive correlations are those between—and
within—geographic and ethnic ties. Gleditsch and Ward’s
(2006) original measure of border contiguity is strongly
correlated with the k = 4 nearest neighbor specification
of intercapital distance and minimum distance ethnic
neighbors (gcor > 6). Trade, meanwhile, is only weakly
correlated with other specifications, suggesting that pat-
terns of international commerce are not constrained by
the limits of geographic and ethnic proximity. Intergov-
ernmental and alliance ties exhibit low-to-moderate over-
lap with geographic and ethnic ties and little overlap with
trade. Only one graph—IGOMDN—is in partial conflict
(negatively correlated) with any other, a likely artifact of
the density of the matrix as shown by Figure 3. Due to
this conflict, we would expect the graph to yield different
autocorrelation estimates from the alternatives—perhaps
estimating repellence where the other graphs estimate
diffusion.

Once the new sets of connectivity matrices were cre-
ated, we adopted the same spatial weights (competitive
and cumulative) to re-code the two spatial variables used

in Gleditsch and Ward (2006): proportion of neighboring
democracies and neighboring transitions to democracy,
as defined in the Appendix. The yearly cross sections
were then remerged into a full data set, spanning 1875–
1998.21 To contrast the authors’ original findings with
those produced by alternative definitions of the ‘‘local
context,’’ we reanalyzed their models with the fourteen
connectivity specifications shown in Figure 3.

To find the most plausible graph (and model) given
the observed data and theory specified by Gleditsch and
Ward (2006), we begin by separating promising candidate
graphs from those that bear little or no structural resem-
blance to the true, unobserved network. Figure 5 shows a
series of parameter-level and model-level diagnostics that
serve this purpose. These diagnostics suggest that the spa-
tial structure implied by connectivity assumptions can
profoundly change inferences about the process of diffu-
sion. While ethnicity and trade are weak, even negligible,
carries of democracy, alliances, and international institu-
tions can provide pathways at least as compelling as geog-
raphy.

To evaluate the strength and significance of the diffu-
sion process itself, we asked the following counterfactual
question: Would a median autocratic state be more likely
to democratize if its neighbors were more democratic?
For each model, we simulated the effect of a one stan-
dard deviation increase in the proportion of neighboring
democratic states on the relevant transition probability,
autocracy to democracy (A fi D).

As shown in Figure 5a, the magnitude, direction and
estimation certainty of the neighborhood effect vary con-
siderably by connectivity type. Although—in most
cases—a more democratic neighborhood is associated
with a higher probability of democratic regime change,
this effect is significantly different from zero under just
three of the measures: intercapital distance (GEOKNN4),
intergovernmental organizations (IGOKNN4), and alliance
ties (Alliance). With all other networks, including the one
originally specified by the authors (GEOCONT), the effect
is positive but insignificant. Only for IGOMDN—the graph

FIG 3. Network specifications. Gray lines indicate the existence of a connection between each pair of country according to each distance or
proximity metric and connectivity criterion.

20 Although geographic and network data for all years (1875–1998) were
used in the models, only 1998 data are shown in Figure 3.

21 While the contiguity measure is exactly the same as the one used by
Gleditsch and Ward (2006), the results differ due to a typo in the specification
of the original model. The result is that neighboring transition to democracy
is allowed to enter the model when the country is either a democracy or an
autocracy in the previous period. The results presented here reflect the cor-
rected model.
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FIG 4. Structural similarity. Shadings correspond to size and direction of graph correlation statistics for every pair of network specifications
shown in Figure 3.

A B

C

FIG 5. Model fit diagnostics. (a) Strength of autocorrelation.(b) Goodness-of-fit. (c) Cross-validation. Figures show [5a] changes in transition
probability due to a single standard deviation increase above the mean in the proportion of neighboring democracies, holding all other vari-
ables at their means, [5b] model AIC statistics, and [5c] out-of-sample areas under the ROC curve, averaged over 100 random data partitions.

Horizontal lines show 95% confidence intervals. Labels on vertical axis indicate proximity measure used in estimation of each model.
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in partial conflict with other candidates in Figure 4—is the
effect negative, though insignificant.

Figure 5b reports model-level goodness-of-fit statistics
(AIC) for all measures. Although the number of parame-
ters is the same across the fourteen models and none can
be penalized for its relative complexity, deviance statistics
indeed vary across the different specifications. Not sur-
prisingly, the best-performing models are ones in which
the estimated diffusion effect is strongest: intercapital dis-
tance (GEOKNN4), intergovernmental organizations
(IGOKNN4), and alliance ties (Alliance).

The same pattern holds when the models are subjected
to cross-validation tests. Following Ward et al. 2010; we
repeated the following procedure 100 times for each of
the fourteen measures: randomly partition the data into
a training set (90%) and validation set (10%), estimate
Model 3 from Gleditsch and Ward (2006) on the training
set, evaluate out-of-sample prediction accuracy by calculat-
ing the area under the receiver operator curve (AUC) on
the validation data. The average out-of-sample AUC and
95% confidence intervals for the 100 runs of each model
are reported in Figure 5c. Prediction accuracy is highest
(AUC > .99, with narrow confidence intervals) for alliance
ties and intergovernmental organizations, followed by in-
tercapital distance.

These diagnostics consistently point to the same
decision: we can safely eliminate all candidate graphs,
save intercapital distance (GEOKNN4), intergovernmental
organizations (IGOKNN4), and alliance ties (Alliance). Of
the three finalists, military alliance networks offer the
strongest transmission channels for the spread of democ-
racy (Figure 5a), the best-fitting statistical model (Fig-
ure 5b), the most accurate out-of-sample predictions
(Figure 5c), and are not negatively correlated with alter-
native specifications (Figure 4). Although the ‘‘true’’ net-
work structure that enables regime change to spread
remains uncertain, we have ample evidence that—of the
candidates considered—alliances provide the closest
approximation.

Beyond statistical and predictive power, a no less
important consideration is the theoretical narrative
implied by each proximity measure. To investigate the
empirical implications of the theory behind each of the
three specifications, we conducted a simulation study of
the 2011 Arab Spring.

Step 3: Simulation of the 2011 Arab Spring

The cascade of popular protests and uprisings that began
to grip the Arab world in December 2010 has spawned
renewed academic and public debate about the potential
spread of revolutionary change. Two positions have
emerged on the topic. The first expects the demonstra-
tion effect of events in Tunisia and Egypt to spark a wave
of political change across the Middle East and other
regions dominated by long-serving autocratic leaders
(Lynch 2011; Smith, Allen, and Rojas 2011). The second
view is more skeptical, and expects the probability of
regime change to be driven less by contagion and more
by exogenous factors like food price shocks and the idio-
syncrasies of political institutions in individual states
(Walt 2011a,b). The differing expectations of the viru-
lence and transmissibility of these revolutions stem in
part from different views of the networks by which regime
change is likely to spread. In addition to Gleditsch and
Ward’s (2006) contention that this process is facilitated
by cross-border movements (GEOCONT), our analysis of

alternatives in Step 2 has identified three other
theoretical pathways as likely given the data: political
communication between capital cities (GEOKNN4), sociali-
zation of elites through intergovernmental organizations
(IGOKNN4), and military alliances (Alliance). Each network
potentially yields a different set of predictions about the
strength and extent of revolutionary spread.

Although the ultimate outcomes of political reforms in
Tunisia and Egypt remain uncertain at the time of writ-
ing, the Arab Spring offers a fitting opportunity to apply
the democratic diffusion model to a specific case. As a
hypothetical scenario, we will assume that Tunisia and
Egypt complete their transitions to a consolidated democ-
racy—defined by the Polity IV characteristics of executive
recruitment, constraints on executive authority, and polit-
ical competition (Jaggers and Gurr 1995). We may illus-
trate how our theories expect this event to resonate by
answering the following question: If a democratic transi-
tion takes place in country i, what is the change in pre-
dicted probability of a democratic transition in country j
(country i’s neighbor) given network specification m?
This statistic is called the equilibrium effect of a democratic
transition, or formally:

Prðyj ;t jyi;t ¼ yi;t�1;CmÞ � Pr ðyj ;t jyi;t 6¼ yi;t�1;CmÞ
where yi,t = 0 if country i is a democracy at time t, yi,t = 1
if it is an autocracy, and Cm is the graph associated with
theory m. All other covariates are held at their observed
values.

Figure 6 shows predicted changes in probability of a
transition from autocracy to democracy, given the estab-
lishment of democratic regimes in Tunisia and Egypt.22

Positive changes in probability indicate that regimes
become more unstable and thus more likely to democra-
tize. Only statistically significant changes in probability
are reported; where the 95% confidence interval around
an equilibrium effect covers zero, the effect is not visual-
ized (Table 1).

The general finding from these simulations is that
democratic regime change in Tunisia and Egypt increases
the probability of regime transitions in neighboring auto-
cratic states. Each set of connectivities, however, conveys
a slightly different story. With Gleditsch and Ward’s
(2006) geographic contiguity neighbors, the effect
reaches eight countries: Algeria, Chad, Jordan, Lebanon,
Libya, Saudi Arabia, Sudan, and Syria. The greatest
change (+0.09) takes place in Libya due to that country’s
direct contiguity to both Egypt and Tunisia. Democratic
regime change in these countries raises the proportion of
democracies in Libya’s neighborhood (Algeria, Chad,
Egypt, Greece, Italy, Niger, Sudan, Tunisia) from one
quarter to one half. If shared borders facilitate the flow
of information about democratic reforms, it will be diffi-
cult for Libya to insulate itself from changes next door.
Saudi Arabia, meanwhile, experiences the lowest change
in probability (+0.027) due to the Kingdom’s relative iso-
lation from revolutionary events. Of the two democratiz-
ing countries, only Egypt is sufficiently proximate to
exert a direct impact on Saudi domestic politics. Of the
seventeen countries that share a border with Saudi Arabia
or lie within 500 km of one, democracies remain a small
minority: Egypt, Israel, and Turkey, against fourteen non-
democratic states.

22 Shadings represent average changes in predicted transition probability
after 1,000 simulations.
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Intercapital distance (k = 4 nearest neighbors) indi-
cates a sharper, but more geographically narrow impact.
The probability of democratization rises in three North
African countries: Algeria (+0.06), Libya (+0.07), and
Morocco (+0.06). No countries east of Egypt are affected
by the Arab Spring due in part to the asymmetrical logic
of k nearest neighbors. While each state has four incom-
ing ties (closest neighbors of country i), the number of
outgoing ties is variable (countries that count i among
their closest neighbors). Due to the high density of capi-
tal cities east of the Sinai peninsula, not a single Middle
Eastern state counts Egypt among its four closest neigh-
bors. Nicosia, Jerusalem, Beirut, and Damascus are all clo-
ser to Amman than Cairo is, just as Baghdad, Kuwait City,
Doha, and Abu Dhabi are all closer to Riyadh. As a result,
Egypt’s democratic shift seemingly occurs in a vacuum,
without any regional effect. Tunisia, by contrast, has a
much stronger impact. It is an intercapital neighbor to
four countries (Algeria, Italy, Libya, and Morocco), three
of which are autocracies where the neighborhood shock
is directly felt.

Connections through intergovernmental organizations
imply a broader and more varied regional impact.
Because the nearest neighbor relation is not a symmetric
one, many relationships are not reciprocated. Unlike in
the intercapital distance case, however, the IGOKNN4 defi-
nition assigns a far more central role to Egypt and Tuni-
sia due to their levels of activity in international
organizations. Seventeen countries count Egypt among
the four states with which they co-participate the most in
IGO’s, and eleven countries list Tunisia among their top
four. The effect is strongest in the countries directly con-
nected to both newly democratic regimes, such as Yemen
(+0.14), Algeria (+0.13), Sudan (+0.12), and
Syria (+0.11). It is weaker in Saudi Arabia (+.05), which is
connected only to Egypt, and Mauritania (+0.05), which
is connected only to Tunisia.

Alliance relationships predict that democratization in
Tunisia and Egypt will have a more even, but relatively
diffuse effect on the region. Both countries enjoy alliance
ties with the same sixteen states—Algeria, Djibouti, Iraq,
Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco,
Oman, Qatar, Saudi Arabia, Somalia, Sudan, Syria, and
the United Arab Emirates. Unlike in the nearest neighbor
specification, alliance ties are all reciprocated. Because of
the dense but symmetric nature of the alliance network,
the regional impact of the Arab Spring scenario is rela-
tively small on average, with little variance—the increase

in probability of democratization ranges between +.04
and +.05 for all neighbors.

What networks provide the most efficient channels for
the Arab Spring to spread? Given the history of democra-
tization since 1875, three specifications have shown them-
selves to be the most likely pathways of democratic
diffusion: intercapital distance (k = 4 nearest neighbors),
joint participation in IGO’s (k = 4 nearest neighbors),
and alliance relationships. Compared with border conti-
guity—the original choice of Gleditsch and Ward
(2006)—these specifications yield stronger and more sig-
nificant diffusion effects, tighter model fit, and more
accurate out-of-sample predictions. They also produce
noticeably different forecasts of how democracy is likely
to spread through the Arab world. In the least-likely sce-
nario that democratic signals are transmitted by cross-bor-
der movement, transitions in Tunisia and Egypt are
predicted to have the strongest impact on Libya and a
more muted effect on other countries in the region. If
democratic signals are transmitted by political communi-
cation between capital cities, the regional effect is pre-
dicted to be sharper but geographically confined to
North Africa. If we accept the narrative that diffusion
occurs through international socialization, the Arab
Spring is predicted to have a broad destabilizing impact
on autocratic regimes in the region, particularly where
intergovernmental ties with Tunisia and Egypt are multi-
faceted and robust—like Yemen and Algeria. Finally, in
the statistically most likely case that democratization
spreads through alliance ties, the predicted changes are
more conservative in size but rather broad in geographi-
cal scope.

Conclusion

Diffusion is the study of how a phenomenon spreads,
across time and space, from a point of origin to proxi-
mate locations. In modeling this process, we must specify
a structure of spatial interdependence. The ‘‘true’’ net-
work of diffusion, however, is typically unobserved and
the choice we make will not necessarily correspond to
reality. The space between objects may be geographic or
nongeographic, and the signals transmitted may be physi-
cal (for example, refugees, weapons, migrants) or more
intangible (for example, norms, policies). These networks
may overlap to varying degrees, and it can be difficult to
assess which measures are structurally closest to the
‘‘true’’ connective topology. In this paper, we offer a

FIG 6. Arab Spring simulation. Average change in transition probability after 1,000 simulations.
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more systematic overview of the assumptions behind
these choices and propose a procedure to adjudicate
between them.

Rather than to select an arbitrary network specification
ex ante (the current norm), our prescription relies on a
theoretically informed enumeration of multiple candi-
dates, followed by an ex post evaluation of their structural
similarity and relative statistical and predictive perfor-
mance. We stress that, while statistical screening can help
eliminate poor choices, theoretical screening should
arbitrate between good ones. Using a famous model of
democratic diffusion, we illustrate how disaggregated sim-
ulation and counterfactual analysis can be used to unpack
the empirical implications of alternative theoretical narra-
tives in the case of the 2011 Arab Spring. While alliance
and intergovernmental ties outperformed geographic
ones in our analysis, we sought to provide enough infor-
mation for the reader to make their own choice.

Spatial analysis is rapidly growing in prominence in
political science. At the same time, models are becoming
increasingly sophisticated to adapt to quantities of partic-
ular interest to political science.23 In all uses of spatial
variables, from simple controls to more complex models
of contagion, we should not leave unchallenged basic
assumptions about who these neighbors are and how they
affect each other.

Appendix: Gleditsch and Ward’s empirical model

Gleditsch and Ward (2006) examine changes of political
regime as a first-order Markov chain process with the
transition matrix

K ¼
Prðyi;t ¼ 0jyi;t�1 ¼ 0Þ Prðyi;t ¼ 1jyi;t�1 ¼ 0Þ
Prðyi;t ¼ 0jyi;t�1 ¼ 1Þ Prðyi;t ¼ 1jyi;t�1 ¼ 1Þ

� �

¼
PrðD ! DÞ PrðD ! AÞ
PrðA! DÞ PrðA! AÞ

� � ð6Þ

where yi,t = 1 if an autocratic regime exists in country i at
time t (A), yi,t = 0 if the regime is democratic (D), and
‘‘ fi ’’ is a symbol indicating a transition from one type
of regime to another between t - 1 and t. Conditional
transition probabilities are estimated by a probit link:

Prðyi;t ¼ 1jyi;t�1; xi;tÞ ¼ U½xT
i;tbþ yi;t�1xT

i;ta� ð7Þ
where xi,t is the vector of covariates of interest.24 If yi,t-

1 = 0 (democracy), then the marginal effect of x on
Pr(yi,t = 1) (autocracy) is b. If yi,t-1 = 1 (autocracy), then
the marginal effect is c, the sum of b and the correspond-
ing a coefficient (that is, the interactive term).25

The authors define a country’s neighborhood through
border contiguity, where the connectivity condition is

met if at least one point on the boundary of state j „ i
is either directly contiguous to country i, or located
within a radius of 500 km.26 This proximity measure is
used to derive two spatial variables, both of which we re-
estimated using several alternative network specifications:

1. The proportion of neighboring democracies,
coded pnbdemij = wij(1-yj), where wij is an ele-
ment of a row-standardized spatial weights
matrix W and yj is the same binary autocracy
variable baut for country j, such that j „ i. This
is an example of a competitive spatial weight,
where the row standardization of W dilutes the
effect of any one country as the number of
neighbors increases.27

2. Neighboring transitions to democracy, coded
nbtdi,t = 1 if at least one of the neighbors of
country i has undergone a transition from yi = 1
(autocracy) at time t - 1 to yi = 0 (democracy)
at time t, and nbtdi,t = 0 otherwise. More for-
mally,

nbtdi;t ¼
1 ifwij demtrj ;t > 0

0 ifwij demtrj ;t ¼ 0

�
; where demtri;t

¼
1 ifyj ;t � yj ;t�1 ¼ �1

0 otherwise

�

This is an example of a cumulative spatial weight.
Unlike in the previous variable, where only the propor-
tion of the neighborhood mattered, each individual
country’s transition contributes independently of others’
occurring in that time period.
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