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1 Lexical scale impurity at the type-level

As noted in the paper the measure we want is a posterior expectation defined for instance pairs,
which we can reformulate at the type level as follows. Let i and j index over instances, and w and
v index over types. Consider an expectation using a single sample to represent the posterior,

E [ |g(wi)− g(wj)| | zi = zj & wi 6= wj & wi, wj ∈M ] =
Q

N
(1)

where N is the number of instance pair comparisons satisfying the conditional, and Q is,

Q =
∑
ij

1{zi = zj} 1{wi ∈M} 1{wj ∈M} 1{wi 6= wj} dij (2)

=
∑
k

∑
ij

1{zi = k} 1{zj = k} 1{wi ∈M} 1{wj ∈M} 1{wi 6= wj} dij (3)

=
∑
k

∑
i

1{zi = k} 1{wi ∈M}
∑
j

1{zj = k} 1{wj ∈M} 1{wi 6= wj} dij (4)

=
∑
k

∑
w∈M,v∈M,w 6=v

nwk nvk dwv (5)

where dij = |g(wi) − g(wj)|, dwv = |g(w) − g(v)|, and nwk and nvk are from the collapsed Gibbs
sampling count tables, i.e. nwk =

∑
i 1{wi = w} 1{zi = k}.

The denominator is
N =

∑
k

∑
w∈M,v∈M,w 6=v

nw,knv,k

To properly compute a posterior expectation using multiple samples,Q/N should be re-evaluated
on several complete samples and then averaged. However, we found little variation between sam-
ples so used only one. We also tried evaluating a singleQ/N where nwk and nvk are averaged counts
from multiple samples—using this corresponds to a factored, mean-field-like approximation to the
posterior—but it also was very similar to using a single sample.

The implementation is in verbdict/score.py.
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2 TABARI lexicon matching

Two additional notes.
(1) There were a number of patterns in the TABARI lexicon that had multiple conflicting codes.

See verbdict/conflicting codes.txt.
(2) As described in the paper, the dependency paths are traversed from source to receiver, cre-

ating the corresponding word sequence. Prepositions are un-collapsed and put into the sequence.
There is special handling of xcomp’s, which sometimes represent an infinitival ‘to’ and sometimes
do not; we generate two versions, with and without ‘to’; if either one matches to a TABARI pattern
then that counts as a match.

The implementation is in verbdict/match.py

3 Inference

The full smoothed model is:
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Context model (smoothed frames):
τ2 ∼ InvGamma

σ2k ∼ InvGamma
αk ∼ Normal

βs,r,1,k ∼ N(0, 100)

βs,r,t>1,k ∼ N(βk,s,r,t−1, τ
2)

ηs,r,t,k ∼ N(αk + βk,s,r,t, σ
2
k)

θs,r,t,∗ = Softmax(ηs,r,t,∗)

Language model:
b ∼ ImproperUniform
φk ∼ Dir(b/V )

z ∼ θs,r,t
w ∼ φz

The blocked Gibbs sampler proceeds on the following groups of variables. These conditionals
implicitly also condition on w, s, r, t.

• Context (Politics) submodel

– [α | η, β, σ2]: Exact

– [β | η, α, σ2]: Exact, FFBS algorithm

• Context/Language bridge

– [η | β, α, z]: Laplace approximation Metropolis-within-Gibbs step

• Language submodel

– [z|η]: Exact, collapsing out φ
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• Dispersions (variances and concentrations)

– [τ2|β], [σ2|η, α], [b|z, w]

The key step is sampling instantiations of η, which is the bottleneck between the politics and
language models; given that, inference proceeds on either side of the model via well-known con-
jugate posterior resampling updates, each described as follows.

3.1 Language Submodel [z|η]

This is the most straightforward step in light of previous work in Bayesian language modeling.
Dirichlet-Multinomial conjugacy allows Gibbs sampling to proceed on individual z’s for indi-
vidual tuples, collapsing out φ (as in Griffiths and Steyvers (2004)), though unlike that work we
condition on θ):

p(zi = k | s, r, t, w, z−i, θ, b) ∝ θs,r,t
#{z = k,w}+ b/V

#{z = k}+ b
(6)

where the counts are taken from the current z setting in all corpus tuples, except tuple i. b is the
Dirichlet concentration parameter, and V is the number of verb-path types.

3.1.1 Context Submodel [α, β | η]

The α update is just a conjugate normal sample; see any standard Bayesian reference, e.g. §4.4.2.1
of Murphy (2012), or Gelman et al. (2003). Let the all-but-α residual be rs,r,t,k = ηs,r,t,k − βs,r,t,k, so
r ∼ N(α, σ2k). With prior p(α) ∼ N(0, 100), then

p(αk | η, β, σ2k) = N

(
n/σ2k

n/σ2k + 1/100
r̄k, [1/100 + n/σ2k]

−1
)

where r̄k is the current residual empirical mean: r̄k =
∑

s,r,t(ηs,r,t,k − βs,r,t,k), and n is the number
of η emissions for this frame (i.e. the number contexts). η only exists for contexts with at least
one event tuple (otherwise it is vacuous variable), the sums over (s, r, t) are only over those con-
texts. Still, n is very large (hundreds of thousands) so the posterior is very peaked; updating α is
basically the same as an ML estimate and the prior is irrelvant.

The β update is dynamic linear model inference. Because of the emissions’ diagonal covariance
diag(σ21 . . . σ

2
K), it decomposes into conditional independence for each frame’s time series for each

dyad. A single joint sample of one of these time series,

(β̂s,r,1,k . . . β̂s,r,T,k) ∼ p(βs,r,1,k . . . βs,r,T,k | α, η, σ2k, τ2)

can be drawn exactly with dynamic programming, via the forward filter, backward sampling al-
gorithm (FFBS; Harrison and West, 1997; Carter and Kohn, 1994). We leave out α, σ2k, τ

2 in the
following equations for clarity. Here, FFBS proceeds in two steps: (1) run a Kalman filter, succes-
sively computing each p(βt | η1 . . . ηt) (each of which is normal), and (2) run a sampling variant
of the RTS smoother, to sample successively each β̂t ∼ p(βt | β̂t+1, η1 . . . ηt) (each of which is also
normal). The final sequence of sampled β̂t values is a sample from the joint sequence posterior,
since p(β1 . . . βT |η1:T ) = p(βT |η1:T ) p(βT−1|βT , η1:T−1) . . . p(β1|β2, η1).
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We use µ and Σ to denote posterior beliefs about β. LetN(µt|t−1,Σt|t−1) denote p(βt | η1 . . . ηt−1),
and N(µt,Σt) denote p(βt | η1 . . . ηt) (where Σ is just a scalar variance). The full Kalman filter is
defined for much more general Gaussian state-space models: (Murphy, 2012 §18.3 notation)

zt = Azt−1 + But + N(0, Q)
yt = Czt + Dut + N(0, R)

Which for us is just
βt = βt−1 + N(0, τ2)
ηt = βt + α + N(0, σ2)

The algorithm is1

• Filter, which takes η1:T as input.

Initialize µ1|0 := 0, Σ1|0 := 100 (and skip the prediction step on the first iteration).

For t = 1..T ,

– Prediction step (infer p(βt | η1 . . . ηt−1)):
µt|t−1 := µt−1

Σt|t−1 := Σt−1 + τ2

– Measurement step (infer p(βt | η1 . . . ηt)):
r := ηt − (µt|t−1 + α) (residual)
K := Σt|t−1(Σt|t−1 + σ2)−1 (Kalman gain)
µt := µt|t−1 +Kr

Σt := Σt|t−1(1−K)

• Backward-sampler, which uses the filtered quantities µt,Σt as input.

Initially sample β̂T ∼ N(µT ,ΣT ).

For t = (T − 1)..1,

– Sample β̂t ∼ N(µt + L(β̂t+1 − µt+1|t), Σt − L2Σt+1|t)

where L = Σt(Σt+1|t)
−1

We have one modification to the standard DLM: while a β exists for all timesteps, there are many
zero-count contexts without any event tuples. The Kalman filter is modified to skip the measure-
ment step for those timesteps, so simply µt := µt|t−1 and Σt := Σt|t−1. We do not store η variables
at those timesteps, since they are unnecessary for inference; but we do simulate them when creat-
ing posterior samples for analysis in the conflict detection task. (But the time-series plots of E[θ]
in section 5 of the paper do not show these samples.)

We use a custom implementation of the filter and sampler that was tested via simulation in two
ways: (1) comparing its inferences on simulated data to those from the dlm package in R (Petris,
2010), and (2) using the Cook et al. (2006) Bayesian software validation technique of checking
the simulation distribution of inferred posterior quantiles of simulated parameters. The latter
was useful for tesing other samplers as well (including the logistic normal inference algorithm
described below).

1See also http://www.gatsby.ucl.ac.uk/˜turner/Notes/1DKalmanFilter/1d_kalman_filter.pdf.
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3.2 Logistic Normal [η | z, η̄]

Next, we must resample the η variables; for every context, sample from the posterior density

p(η | η̄, z) ∝ N(η | η̄,Σ) Mult(z | θ(η)) (7)

where η̄ = β+α denotes η’s prior mean. This has an unnormalized log posterior density function

`(η) =
∑
k

(
− 1

2σ2k
(ηk − η̄k)2 + nk log θ(η)k

)
(8)

where nk is the number of tuples in this context having frame k, and θ(η) is the value of θ deter-
ministically associated with η via the softmax function.

Unfortunately, unlike the Dirichlet, a logistic normal prior on a multinomial is not conjugate;
Equation 8 describes the unnormalized density, but there is no closed form for the normalized
posterior (and more to the point, no known exact sampling algorithm).

As described in the paper, we use a Laplace approximation proposal—a Gaussian approxi-
mation centered at the mode, which can be justified as the second-order approximation to the
log-posterior there—taking a proposed sample η∗ via the steps

(1) Solve MAP η̂ = arg maxη `(η)
(2) Sample η∗ ∼ N(η̂, [H(−`(η̂))]−1)

where H(−`(η̂)) denotes Hessian of the negative unnormalized log-posterior at η̂.
Step #1 could be solved in a number of ways. We use a fast linear-time Newton algorithm from

Eisenstein et al. (2011), which was faster than gradient descent methods we tried; we reproduce it
below. The Newton step is

η := η − λH−1g

where the gradient of −` is

g(η)k = nθk − nk +
1

σ2k
(ηk − η̄k)

and the Hessian has diagonal and off-diagonal elements

Hkk = nθk(1− θk) + 1/σ2k, Hjk = −nθjθk

where n is the number of event tuples in the context (i.e. number of individual z’s). Matrix
inversion is in general a cubic time algorithm, but we apply the Sherman-Morrison formula to
only have to invert a diagonal matrix. For any invertible square matrix A and vectors u,v, the
Sherman-Morrison formula gives an alternate expression for (A + uvT)−1 in terms of A−1. For a
diagonal matrix A and vectors u, v, w, we apply the Sherman-Morrison formula and configure the
order of operations to avoid creating any non-diagonal matrices:

Z = (A+ uvT)−1w (9)

Z = A−1w − [1 + vTA−1u]−1(A−1u)(vTA−1w) (10)

Zj = (A−1jj wj)−
1

1 +
∑

k A
−1
kk vkuk

(A−1jj uj)
∑
k

A−1kk vkwk (11)

where the last line shows the resulting vector for one element j.
The Hessian can be rewritten as a sum of diagonal and rank-1 matrix as H = diag[nθk +

1/σ2k] − nθθT, thus the Newton step direction H−1g can be calculated in linear time by applying
Eq. 10 with A−1kk = (nθk + 1/σ2k)

−1, w = g, u =
√
nθ, v = −

√
nθ.
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Eisenstein et al. (2011) present this technique in the context of a variational inference algorithm,
but actually it applies to any MAP logistic normal inference problem under diagonal covariance.
We find it usually converges to an η̂ estimate in only several iterations (using a line search,2 first
taking a step sized λ = 1, and if it’s not an improvement, halving λ until it is.)

Step #2 is to sample from the multivariate normal N(η̂, H−1). The simplest MVN sampling
algorithm is to take K samples from N(0, 1) and multiply that vector by the Cholesky root of
the covariance (and add the mean). But it takes cubic time to compute a Cholesky root,3 which
becomes too expensive for large values of K. Instead, we only invert the diagonal of the Hessian
(linear time), resulting in a diagonal covariance (thus each η∗k ∼ N(η̄k, 1/Hkk)); this is only an
axis-aligned MVN approximation to the posterior.4

So this gives a ηnew proposal. It is possible to simply update to it directly; but it is more accurate
to use it as a Metropolis-Hastings proposal. Calculate the acceptance probability

a =
p(ηnew|η̄, z)
p(ηold|η̄, z)

N(ηold; η̂, H−1)

N(ηnew; η̂, H−1)

and accept the proposal at probability min(a, 1). The ratio of true posterior densities can be calcu-
lated with the unnormalized form in Equation 8.

See also Wang and Blei (2012) which develops a Laplace approximation for variational infer-
ence for several nonconjugate models including a logistic normal topic model. The Metropolis-
Hastings approach we use here is similar to Hoff (2003).

3.3 Learning concentrations and variances

There are several parameters that control the overall variability of the above quantities. The
Dirichlet concentration parameter b controls the similarity between the frames’ predicate-path
distributions; the autoregressive variance τ2 controls how similar a dyad’s latent positions are be-
tween timesteps; and the emission variances σ2k controls how similar the frame distributions are
for two contexts with identical latent states.

All these prior parameters are learned, thus naturally leading the model to learn highly likely
levels of sparsity and variability. This is tremendously convenient in practice, since there are no
hyperparameters that need to be tuned (beyond K and data preprocessing decisions). It also
helps the model learn better solutions; for example, Asuncion et al. (2009) finds that Dirichlet
concentration learning gives much better solutions for LDA.

The symmetric Dirichlet parameter b is learned with slice sampling (Neal, 2003), under an
improper uniform prior for b. (In other experiments we have found different diffuse priors for b
make little difference.) Slice sampling only requires an (unnormalized) posterior density function;
with a uniform prior it’s just the Dirichlet-multinomial likelihood, which is, integrating out φ,

L(b) = p(w | z, b) =
K∏
k=1

Γ(b)

Γ(b+ nk)

V∏
w=1

Γ(b/V + nk,w)

Γ(b/V )
(12)

where V is the verb-path vocbaulary size, nk is the number of event tuples having z = k, and nk,w
the number having frame k and verb-path w. An implementation speedup is possible noting that

2e.g. http://www.cs.cmu.edu/˜ggordon/10725-F12/slides/11-matrix-newton-annotated.pdf
3At least by the naive algorithm; is there a shortcut here?
4And it’s not even the factored marginals ofN(η̂, H−1), since the diagonal of a Hessian inverse is not the same thing

as the inverse of a Hessian diagonal.
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each frame’s lexical count vector (nk,1..nk,V ) is usually very sparse with mostly 0’s, so those terms
can be skipped in the innermost loop. (Also draw out the Γ(b/V ) denominator.) This sparsity
during Gibbs sampling is a natural consequence of the sparsity of language; it can be exploited in
other ways to improve sampling efficiency, e.g. Yao et al. (2009).

The context model’s variance terms are also learned. We use a conjugate inverse-Wishart prior,
in inverse chi-squared parameterization (e.g. Murphy, 2012 §4.6.2.2) of χ−2(prior strength, prior value),
using diffuse prior χ−2(1, 1). However, since the amount of data is very high, the posterior inter-
vals are very small (often less than 10−3), and sampling is nearly equivalent to ML inference.

Technically, the conjugate sampling equations are

τ2 ∼ χ−2
1 +N,

1

1 +N

1 +
∑

s,r,t>1,k

(βs,r,t,k − βs,r,t−1,k)2


where N is (K − 1) × NumDyads × (NumTimesteps-1), and

σ2k ∼ χ−2
1 +N,

1

1 +N

1 +
∑

(s,r,t) where ns,r,t>0

(ηs,r,t,k − η̄s,r,t,k)2


whereN is the number of contexts with non-zero events. In both casesN is hundreds of thousands
to millions, swamping the prior pseudocount value of 1.

Here is a plot of the dispersion parameters over one Gibbs sampling run (all 10 σ2k’s, b, then
τ2). The fact that dispersions are still drifting in early iterations is an indicator the sampler has
not mixed. (Indeed, even though we attained useful results at iteration 10,000, and changing the
number of iterations to higher numbers made little difference to the evaluation metrics, these plots
clearly indicate mixing has not been achieved at that point. The inferences can be justified only as
approximations (but useful ones) of the posterior.)
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3.3.1 Softmax bug

The results in the ACL paper have an anomaly where one frame often has a very low probability
mass, so it is essentially a K − 1 dimensional topic model. (This is why the K = 2 models es-
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sentially learn only one frame, and thus have a similar lexical scale purity as the random choice
baseline that would come from one big cluster of all words.) This was discovered to be due to a
bug in the implementation: it clamped the K’th element of η to 0 (attempting to implement an
alternate version of softmax with better identifiability), but only the first K − 1 elements of θ were
used in the posterior density evaluation for the MH step, so counts of z = K were ignored in the
likelihood. Thus the model would eventually shift θK to zero and put all the probability mass
on the first K − 1 elements. (It takes a while for the bug to cause this to happen, since the MAP
optimum and Laplace approximation for η, given a fixed θ, is computed correctly. But the density
ratio for the MH step prefers assigning low θK values.) If θK = 0, then the model is exactly the
same as a fully parameterized K − 1 model; since it is close to zero, it is very similar to that.
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