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Purpose of sensitivity analysis, to deal with
conversations like these...

I You: Here are the results of my matching (or insert other method
for causal inference with observational data that relies on some
form of ignorability assumption) analysis showing that becoming
unemployed causes a higher likelihood of opioid use

I Your skeptical adviser: when estimating your propensity score,
did you include a measure of whether the person worked in a
manual occupation on the losing end of skill-based technological
change?

I You: Of course!
I Your skeptical adviser: what about a measure of a person’s

(pre-treatment) degree of existential suffering?
I You: I think that’s impossible to observe or measure...
I Your skeptical adviser: well how large would a difference in

inherent potential for opioid use among those more likely to
become unemployed need to be to bias your results? When
would it lead you to find that becoming unemployed causes a
lower likelihood of opioid use?

I You: I have no idea...I guess I need to learn about sensitivity
analysis...
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In diagram form

New unemployment Opioid use

Pre-treatment
existential
suffering

Previous work
in manufacturing
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Outline

I Blackwell
1. Review of causal quantities of interest in potential outcomes

framework
2. Brief diversion to Rosenbaum (2002) to build intuition about

purpose behind sensitivity analysis
3. Blackwell’s approach: ”de-confound” the dependent variable using

a confounding function
4. Illustrate approach with (relatively) basic case
5. Focus on three extensions of basic case:

5.1 Change confounding function from one-sided bias to alignment bias
5.2 Re-parametrize confounding function to express magnitude of

confounding in terms of variation in R2 rather than difference in mean
inherent potential outcomes between treatment and control (α)

5.3 Going from static, cross-sectional treatment assignment to treatments
over time (dynamic case)

I Throughout, briefly contextualize with other approaches
discussed in Morgan and Winship

4 / 37



Causal quantities of interest and underpinning
assumptions

Quantities:
I Average treatment effect (ATE):

τ = E [Yi (1)− Yi (0)] = E [Yi (1)]− E [Yi (0)]

I Average treatment effect among treated units (ATT):

τatt = E [Yi (1)−Yi (0)|Ai = 1] = E [Yi (1)|Ai = 1]−E [Yi (0)|Ai = 1]

Main assumptions:
I Consistency (less of a focus here; violated, for instance, by

spillover of treatment onto untreated units)
I Ignorability- version depends on whether we’re concerned with

estimating ATE versus ATT:
1. ATE requires ignorability among both treatment and control units,

which means for covariates Xi and treatments a ∈ (0, 1):

Yi (a)⊥Ai |Xi = (Yi (1),Yi (0))⊥Ai |Xi

2. ATT requires ignorability only among control:

Yi (0)⊥Ai |Xi
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Your adviser again...

(Yi (1),Yi (0))⊥Ai |Xi

1. To satisfy above assumption, can keep on adding Xi to condition
on (while paying attention to post-treatment issues discussed in
week 1), but in observational data, there will always remain
unobserved confounders correlated with both treatment status
and potential outcomes (e.g., your adviser’s comment about
existential suffering)

2. Sensitivity analysis: more systematically explore how the
correlation between a unit’s probability of receiving treatment and
that unit’s potential outcomes affects magnitude and direction of
estimated treatment effect

3. What’s up next:
3.1 More in-depth review of Rosenbaum (2002) than in Blackwell.

Why? Still common form of sensitivity analysis, and also gestures
at approach of modeling selection into treatment

3.2 Blackwell article
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More background on Rosenbaum (2002)
Illustrating with unemployment and opioid example:1

1. πi = Pr(Ai = 1)); 1− πi = Pr(Ai = 0); Xi are observed covariates
2. Imagine Bob and Jim, where XBob = XJim (e.g., same manufacturing job,

same age, same observed disability status). Bob and Jim’s odds of
treatment (becoming unemployed) are:

OddsBob =
πBob

1− πBob

OddsJim =
πJim

1− πJim

3. The sensitivity parameter, Γ, is the odds ratio of these two probabilities
of treatment, or the odds of Bob being unemployed over the odds of
identical observed covariate Jim being unemployed:

Γ =

πBob
1−πBob
πJim

1−πJim

=
OddsBob

OddsJim

4. While for Blackwell q(a, x) = 0 is case where we assume ignorability
assumption is satisfied, for Rosenbaum, the case where the true value
of Γ = 1 is case where ignorability is satisfied (note that the observed
value of Γ will always be 1 for two obs. with same observed covariates
since all we have are these observed covars to calculate the OR)

1Credit to Bertolli (2013) for helpful slides on Rosenbaum bounds
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More background on Rosenbaum continued
Basic procedure - engage in a thought experiment where we see how
changing Γ to reflect different magnitudes of confounding by
unobserved variables affects results:

1. Choose range of Γ that represent worst case scenarios of
different odds of Bob versus Jim becoming treated (unemployed)
despite same observed covariates (e.g., if you think odds might
only differ slightly, so πBob and πJim, though not equal, are within
the range of 0.33 to 0.66, can calculate Γ range as follows):
1.1 Lower bound: 0.33

1−0.33 = 0.5
1.2 Upper bound: 0.66

1−0.66 = 2
1.3 0.5 ≤ Γ ≤ 2 (no individual is more than twice as likely than

someone with same covariates to become unemployed)

2. Increment through different values of Γ in that range to see how
significance and size of treatment effect changes; estimates for
how these quantities change is based on exact test that
corresponds to nature of dependent variable
2.1 Binary dependent variable: McNemar’s exact test
2.2 Continuous dependent variable: Wilcoxon signed rank test for p

value and Hodges-Lehmann for point estimate
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Illustrating with binary treatment example
Outcomes for matched pairs:

Employed
Opioid No opioid

Unemployed Opiod 10 b = 50
No opioid c = 20 140

I If Γ = 1 (so assume individuals with same observed covariates
have same probability of employed and unemployed), then
McNemar’s exact p-value is, where n = b + c

2 ∗
n∑

i=b

(n
i

)
0.5i 0.5n−i ≈ 0.00044

I When you increase Γ, the probabilities in red above are no longer
0.5 (become: π = Γ

1+Γ and 1− π) and p-value increases
I Putting into code (mcn.exact.p finds the non-summation part of

above expression):
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Results
I Results for original structure of table (shown on left): Γ = 1 (assume no

unobserved confounding): unemployed more likely to use opioids; if
unobserved confounders associated with opioids use make odds of
treatment > 1.5 times higher, p > 0.05 so no difference

Employed
Opioid No opioid

Unemployed Opiod 10 b = 50
No opioid c = 20 140

pvalues prob gamma
0.0000 0.4444 0.8000
0.0001 0.4737 0.9000
0.0004 0.5000 1.0000
0.0018 0.5238 1.1000
0.0057 0.5455 1.2000
0.0148 0.5652 1.3000
0.0328 0.5833 1.4000
0.0635 0.6000 1.5000

I Can also reverse table (b = employed opioid users), and see that in case
of no confounding (Γ = 1), McNemar’s exact p test says that employed
persons do not use opioids at higher rate. But if there is large enough
amount of unobserved confounding Γ < 0.3, null result assuming no
confounding becomes significant assuming high confounding:

Unemployed
Opioid No opioid

Employed Opiod 10 b = 20
No opioid c = 50 140

pvalues prob gamma
0.0000 0.0000 0.0000
0.0000 0.0909 0.1000
0.0178 0.1667 0.2000
0.3409 0.2308 0.3000
1.0903 0.2857 0.4000
1.6686 0.3333 0.5000
1.9089 0.3750 0.6000
1.9790 0.4118 0.7000
1.9956 0.4444 0.8000
1.9991 0.4737 0.9000
1.9998 0.5000 1.0000
2.0000 0.5238 1.1000
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From Rosenbaum to Blackwell

I Takeaway from Rosenbaum:
I The case where two persons with same observed covariates have

same odds of treatment is a special case; in that special case,
Γ = 1

I We can explore the effect of deviations from that special case by
seeing how our results change when two persons with the same
observed covariates have different odds of treatment (Γ 6= 1)

I What does Blackwell’s approach have in common? Ignorability
assumption on which estimates rest is a special case; explore
whether and how results change when we move away from that
special case
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From Rosenbaum to Blackwell

Blackwell’s contributions:
1. Reparametrize confounding function to form a more intuitive

understanding of confounding’s magnitude: Draws on
Imbens (2003) to compare variation in outcome explained by
specific form of confounding to variation in outcome explained by
particular covariates (partial R2 for that covariate)

2. ”Evaluate alternative stories beyond one-sided bias”: while
Rosenbaum bounds largely focus on one-sided bias, in theory,
we can construct a bespoke confounding function well-suited to
our particular confounding story; in practice, large focus on
one-sided bias with some alignment bias

3. Framing sensitivity analysis explicitly within potential
outcomes framework
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Blackwell: the confounding function
I General form:

q(a, x) = E [Yi (A)|Ai = a,Xi = x ]− E [Yi (A)|Ai = 1− a,Xi = x ]

I Single-parameter version (equation 5):

q(a, x ;α) = E [Yi (A)|Ai = a,Xi = x ]−E [Yi (A)|Ai = 1−a,Xi = x ] = α

I One-sided bias (equation 6):

q(a, x ;α) = α(2a− 1)

I One-sided bias for treatment versus control:

q(1, x ;α) = α

q(0, x ;α) = −α

I More analytics
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Directions of α for examples

Using the one-sided bias function (reverse italicized for α < 0)

Example α > 0; Counfounders mean...
Ai = 1= unemp. Higher potential likelihood of opioid use
Yi (a) = opioid use among those with higher prob. of unemp.

Ai = 1 = job-training (JT) Higher potential earnings among
Yi (a) = earnings among those with higher prob. of

participating in JT

Ai = 1 = fem. judge Higher potential likelihood of voting liberal
on panel; among those with higher probability
Yi (a) = liberal vote of being in panel with a female

Ai = 1 = neg. campaign Higher potential turnout among
Yi (a) = turnout campaigns with higher prob. of going negative
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Once we have the confounding function, we use it to
”de-confound” each observation’s observed outcome

1. Begin with each individual’s observed outcome Yi

2. Create a confounding-adjusted outcome:

Y q
i = Yi − q(Ai ,Xi )Pr [1− Ai |Xi ]

3. Example with snapshot of LaLonde data and treatment
prediction equation accounting for degree status, past earnings,
age, etc. and where α = 500 v. α = 2000, and adjust =
q(a, x)Pr(1− Ai |Xi )

id no ai Pr(Ai Pr(1− Ai |Xi ) yi adjust yq
i adjust yq

i
deg. = 1) α = 500 α = 500 α = 2000 α = 2000

1 0 1 0.66 0.34 0 169 -169 676 -676
2 1 1 0.36 0.64 4666 319 4348 1275 3391
3 1 0 0.36 0.36 445 -181 627 -725 1170
4 0 0 0.58 0.58 12384 -289 12673 -1156 13539

15 / 37



Once we have the confounding function, we use it to
”de-confound” each observation’s observed outcome

id no ai Pr(Ai Pr(1− Ai |Xi ) yi adjust yq
i adjust yq

i
deg. = 1) α = 500 α = 500 α = 2000 α = 2000

1 0 1 0.66 0.34 0 169 -169 676 -676
2 1 1 0.36 0.64 4666 319 4348 1275 3391
3 1 0 0.36 0.36 445 -181 627 -725 1170
4 0 0 0.58 0.58 12384 -289 12673 -1156 13539

Two things happening in de-confounding of outcome variable:
I What q(a, x) is doing: since we set q(1, x) > q(0, x) =⇒ α > 0

for tx and α < 0 for control, the earnings of those in treatment
group are adjusted downwards while earnings of those in control
group are adjusted upwards

I Example of downward adjustment of treatment group: id2 goes
from $4666 to $4348 if α = 500 and $3391 if α = 2000

I Example of upward adjustment of control group: id 3 goes from
$445 to $627 and $1170 when α = 500 and 2000 respectively

I What Pr [1− Ai |Xi ] is doing: those with higher probability of
being in opposite treatment group have greater-magnitude
adjustment of potential outcomes

I Example id2: higher probability of being in control than tx due to no
high school degree; greater downward adjustment 16 / 37



More intuition behind role of Pr(1− Ai |X ) in
adjustment

I Focus on id1 and id2:
id no ai Pr(Ai Pr(1− Ai |Xi )

deg. = 1)
1 0 1 0.66 0.34
2 1 1 0.36 0.64

I One (heuristic), way to think about id2s larger adjustment is to
think about a person’s probability of treatment being partitioned
into Pr(Ai = 1|observedi ) + Pr(Ai = 1|unobservedi ) = 1, with id1
and id2 having different partitions (green: Pr(Ai = 1|observedi )
and red: Pr(Ai = 1|unobservedi )):

1. id1’s partition: observed covars played larger role in fact id1 was
treated
0.34 0.66

2. id2’s partition: unobserved covars played larger role in fact id2 was
treated (given low role for observed covars)

0.64 0.36

I For id2, we give larger downward adjustment because small role
for observed covars in him being treated means we assume
larger role played by unobserved covars/greater confounding
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Once we have the ”de-confounded” outcome, how do
we proceed?

id ai yi yq
i yq

i
α = 500 α = 2000

1 1 0 -169 -676
2 1 4666 4348 3391
3 0 445 627 1170
4 0 12384 12673 13539

1. Switch from estimation of treatment effect with confounded outcome Yi

to estimation of treatment effect with de-confounded outcome Y q
i , e.g.,

if:
I Old:

Yi = α + β1Ai + β2Xi + ei

I New:
Y q

i = α + β1Ai + β2Xi + ei

2. Iterate through different values in both directions (e.g.,
−4000 ≤ α ≤ 4000) and re-estimate β̂1 (difference in earnings between
treatment and control)

3. For above example, as α gets larger, the de-confounded treatment
outcomes get smaller while the de-confounded control outcomes get
larger, meaning at some α, β̂1 = 0
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Visual illustration: full LaLonde data

Produces same results as causalsens with confound = ”one.sided”
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Visual illustration: full LaLonde data
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Figure: ATT on left corresponds to Figure 1 in paper; ATE is on right. Differ-
ence stems from ATE: adjust both treatment and control yi versus ATT: adjust
only control yi with −αPr(Ai = 1|Xi )
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Summing up thus far and where we’re going next

I We reviewed the basic confounding function
I We illustrated how to use that function to ’de-confound’ the

outcome variable and re-estimate the treatment effect
I Now, we’ll discuss three extensions of basic case:

1. Change confounding function from one-sided bias to alignment bias
2. Re-parametrize confounding function to express magnitude of

confounding in terms of variation in R2 rather than difference in
mean inherent potential outcomes between treatment and control
(α)

3. Going from static, cross-sectional treatment assignment to
treatments over time (dynamic case)
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Extension one: change confounding function

I In previous example, checked how results change due to
one-sided bias (q(1, x) = α; q(0, x) = −α), which captures the
situation where we expect those who select into treatment to
have inherently higher or lower values of outcome than those
who select into control

I Lalonde example: those who opt for job training have inherently
higher or lower potential earnings than those who do not opt into
treatment

I Different confounding model: alignment bias
(q(1, x) = q(0, x) = α) captures the situation where we expect
those who select into treatment to have larger treatment effects
than those who select into control

I Lalonde example: those who opt for job training have unobserved
characteristics that help them benefit more from job training than if
those who did not opt for job training were subject to the treatment
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Extension one: alignment bias with same LaLonde
participants

id no ai Pr(Ai Pr(1− Ai |Xi ) yi adjust yq
i adjust yq

i
deg. = 1) α = 500 α = 500 α = 2000 α = 2000

1 0 1 0.66 0.34 0 169 -169 676 -676
2 1 1 0.36 0.64 4666 319 4347 1275 3391
3 1 0 0.36 0.36 446 181 265 725 -279
4 0 0 0.58 0.58 12384 289 12095 1156 11228

What changed from one-sided bias de-confounding?
1. Rather than adjusting earnings of treatment units downwards

and earnings of control units upwards, all receive same sign of
adjustment (downward when α > 0)

2. Because sign of adjustment is same between treatment and
control, what leads to β̂ → 0 (might) be something like the
following case:
2.1 People with unobserved characteristics that lead them to benefit

most from treatment actually have lower Pr(Ai = 1|Xi )
2.2 Lower Pr(Ai = 1|Xi ) =⇒ higher Pr(1− Ai |Xi ) =⇒ greater

downward adjustment of treatment group’s outcomes
2.3 This is happening less (smaller downward adjustment) in controls
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ATT: alignment bias (left) versus one-sided bias (right)
with LaLonde data
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Extension two: express magnitude of confounding in
terms of R2 rather than in terms of α

I In previous example, we measured magnitude of confounding in
terms of difference between mean potential outcomes for
treatment group and control (e.g., $500 difference in inherent
potential earnings, $2000 difference in potential earnings)

I Say positive treatment effect is still significant at α = 500 but no
longer significant at α = 2000, difficult to know which is a more
plausible magnitude of confounding

I More intuitive way to measure magnitude: instead of
incrementing through α, increment through different proportions
of variance in outcome explained by selection into treatment (or
other confounding process)

I Can then compare to partial variance explained by influential
covariates

I More robust results: treatment effect still holds even when, for
instance, outcome variance explained by confounding is larger than
outcome variance explained by influential observed covar.
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Extension two: mechanics
1. Start with proportion of potential outcome variance explained by

observed covariates X and treatment status A:

R2
q(Xi ,Ai ) = 1− var [Yi (0)|Xi ,Ai ,q]

var [Yi (0)]

2. Then, find the proportion of potential outcome variance explained
by observed covariates X :

R2
q(Xi ) = 1− var [Yi (0)|Xi ,q]

var [Yi (0)]

3. We can express the proportion of unexplained variance in the
potential outcomes due to selection into treatment by taking the
variance explained by X and selection into treatment and
subtracting out the variance explained by X (R2

q(Xi ,Ai )− R2
q(Xi ))

and rearranging to get:

R2
q(Ai ) = 1− var [Yi (0)|Xi ,Ai ,q]

var [Yi (0)|Xi ,q]
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Extension two: mechanics

I Another way to express (3) from previous slide is as:

R2
q(Ai ) = 1− var [Yi (0)|Xi ,Ai , q]

var [Yi (0)|Xi , q]
= 1− unrestricted model

restricted model
= 1− var(ei )

var(e′i )

I Then, assuming q is expressed as one-sided bias:
1. Start with:

R2
q(Ai ) = 1− var(ei )

var(e′i )

2. Simplify and plug in e
′
i = αAi + ei to numerator:

R2
q(Ai ) =

var(αAi + ei )− var(ei )

var(e′i )

3. Use var(aX ) = a2var(x) and var(x + y) = var(x) + var(y) to
further simplify:

R2
q(Ai ) =

α2var(Ai ) + var(ei )− var(ei )

var(e′i )
=
α2var(Ai )

var(e′i )

27 / 37



Extension two: mechanics

I α2 and var(Ai ) are straightforward to estimate, what about
var(e

′

i )?
I Remember that var [Yi (0)|Xi ,q] = var(e

′

i ) corresponds to the
model where Ai = 0, so:

Yi (0) = Xiβ + αAi + ei

becomes the restricted model:

Yi (0) = Xiβ + e
′

i

I Because assuming the confounding function is correct,
E [Yi (0)] = E [Y q

i ], we can estimate Yi (0) = Xiβ + e
′

i by:
1. Regressing Y q

i on X for Ai = 0
2. Finding variance of residuals
3. Can then find partial R2 for particular covariates of interest to which

to compare this value2

2Implementation-wise, can use drop1 in R to find sum of squares and
residual sum of squares when you restrict the model to a particular variable
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Extension two: graph for LaLonde ATT and ATE, also
plot partial R2 of education (p < 0.1 in original
outcome model)

Educ partial r2: 
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Note when implementing: since a bit unclear what negative R2 is, plots in paper seem to be gener-

ated by iterating through positive R2 values, splitting the data at α = 0, and then setting R2 to −R2

for observations where α < 0
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Extension three: time-varying treatments and
confounding

Motivation:
I Previous examples were treatments and covariates observed at

one point in time (e..g, one-shot job training)
I Blackwell (2012) argues that at least some treatments social

scientists care about are composed of action histories, a specific
sequence of treatments

I Example: decisions to run negative (Ai = 1) versus positive
campaign ads at different weeks leading up to an election

campaign Week 1 Week 2 Week 3 Week 4 Vote share
1 Neg Neg Neg Pos 67%
2 Pos Neg Pos Neg 30%
3 Neg Neg Neg Neg 47%

I These cases have more thorny dilemma than the single-shot
treatment confounder issue: time-varying confounders, which are
both affected by past treatments and influence choice of
treatment at time t (e.g., poll results from week 2 being
influenced by neg v. pos ad at week 1 and influencing probability
of negative campaign at week 3)
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Extension three: from ignorability to sequential
ignorability

I Single-shot treatment case: rests on ignorability assumption and
sensitivity analysis probes how results change with violations

I Dynamic treatment case: rests on sequential ignorability
assumption; likewise, sensitivity analysis probes consequences
of violations (notation: history of a variable up to time t):

Yi (a)⊥Ait |X it ,Ait−1

I Confounding function in dynamic treatment case:

qt (a, x t ) = E [Y (a)|At = at ,X t = x t ,At−1 = at−1]

− E [Y (a)|At = 1− at ,X t = x t ,At−1 = at−1]

I How do we use that confounding function to adjust the outcome
variable?

Yα
i = Yi −

T∑
t=0

qt (Ait ,X it ;α)Pr(At = 1− Ait |Ait−1,X it )
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Extension three mechanics: de-confounding outcome
in dynamic case

1. First, model the probability of treatment in week t conditional
upon X it and Ait . E.g., letting Ait = 1 = negative campaign ad for
campaign i in week t if t = 3:

Pr(Ai3 = 1) = α + β1negi1(1 = yes; 0 = no) + β2negi2(1 = yes; 0 = no)

+ β3donationi1 + β4donationi2 + β4donationi3 + ei

2. Using fitted values from 1, assign each i at each t the following,
which is 1 minus the probability of reaching this treatment
history: Pr(At = 1− Ait |Ait−1,X it ) and multiply by appropriate α
(e.g, alignment versus one-sided bias)

3. For each i , sum the results of (2) across t and subtract from Yi to
create Yα

i , which is then used in whatever estimation procedure
for treatment effect is chosen (e.g., marginal structural model)
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Extension three: Blackwell’s results for negative
campaign case, discuss interpretation
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Briefly: alternative approaches (Morgan and Winship)
I Blackwell and Rosenbaum correspond to Section 12.3

(”Sensitivity Analysis for Provisional Causal Effects Estimate”)
I Authors outline a different approach in Section 12.2 where rather

than investigating the sensitivity of a treatment’s point estimate to
violations of strong assumptions like ignorability, we place
bounds on the causal effect of treatment by adding weak
assumptions

I Bounding, with work by Manski and more recently Keele, outlines
different strategies for bounding causal quantities of interest like
the Average Treatment Effect (ATE):

1. No-assumptions bounds: if outcome variable is constrained to lie
between 0 and 1, the initial bounds on the treatment effect
ATE = [−1, 1] (width = 2) can be shrunk to bounds where width = 1
by assuming different combinations of quantities for unobserved
outcomes (e.g., E [Y = 1|A = 0] = 1 and E [Y = 0|A = 1] = 0, and
vice versa)

2. Weak assumptions bounds: can narrow width of interval (most
helpfully so that the bounds exclude 0) through various weak
assumptions: e.g., monotone treatment response, monotone
treatment selection

34 / 37



Recap/some questions
1. What we reviewed: why sensitivity analysis? Rosenbaum bounds

approach; Blackwell approach: simple case and three extensions
(different confounding function; re-parametrization of magnitude of
confounding; dynamic treatment)...some questions:

2. One advantage of Blackwell is flexibility to create a confounding function
specific to a theoretical story. Yet most examples drew on one-sided
bias (with some alignment bias). Other ideas for confounding functions
beyond these?

3. Blackwell argues that one limitation of his approach is that at its core, it
relies on a ”selection on the observables” assumption so it is
”incompatible with certain other approaches to causal inference such as
instrumental variables”(p. 181). Yet Morgan and Winship argue that
”selection-bias models are most effectively estimated” when we include
instrumental variables in Z . For the step in Blackwell’s approach where
we estimate each unit’s probability of treatment, can we use an
instrumental variable as part of this estimation?

4. Dynamic treatment approach (action history) was developed in
biostatistics where we care about quantities like cumulative treatment
history. We have Blackwell’s negative ad example; what other social
science questions would benefit from a treatment-history type approach
(with accompanying sensitivity checks)?
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More analytics behind de-confounding outcome
1. Begin by expanding E [Yi (0)] in case without covariates:

E [Yi (0)] = E [Yi (0)|Ai = 0]Pr [Ai = 0] + E [Yi (0)|Ai = 1]Pr [Ai = 1]

2. Since the terms in red below sum to zero, we can add them to equation, with undersets used
in next step:

E [Yi (0)] =E [Yi (0)|Ai = 0]Pr [Ai = 0]
A

+ E [Yi (0)|Ai = 1]Pr [Ai = 1]
B

+

E [Yi (0)|Ai = 0]Pr [Ai = 1]
C

− E [Yi (0)|Ai = 0]Pr [Ai = 1]
D

3. Rewrite (A) as E [Yi [0]|Ai = 0]Pr [Ai = 0] = E [Yi [0]|Ai = 0](1− Pr [Ai = 1]) = E [Yi [0]|Ai =
0]− E [Yi [0]|Ai = 0]Pr [Ai = 1] and substitute into above:

E [Yi (0)] =E [Yi (0)|Ai = 0]− (1)

E [Yi (0)|Ai = 0]Pr [Ai = 1]+ (2)

E [Yi (0)|Ai = 1]Pr [Ai = 1]+ (3)

E [Yi (0)|Ai = 0]Pr [Ai = 1]− (4)

E [Yi (0)|Ai = 0]Pr [Ai = 1] (5)

4. Cancel out (2) and (5), combine (3) and (4) and change sign by subtracting negative, and
multiply (1) by Pr [Ai = 0] + Pr [Ai = 1] = 1(typo in text) to get red= q(0), cyan = Yi (0), and
green = Pr(1− Ai ):

E [Yi (0)] =E [Yi (0)|Ai = 0](Pr [Ai = 0] + Pr [Ai = 1])

− Pr [Ai = 1](E [Yi (0)|Ai = 0]− E [Yi (0)|Ai = 1])
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