Prediction and cross validation

Soc Stats Reading Group

Alex Kindel

Princeton University

1 December 2016

Outline

- Civil war
- Cross validation
- Back to civil war
- Why care about prediction?

Ward, Greenhill & Bakke (2010)

- "The perils of policy by p-value: Predicting civil conflicts." *Journal of Peace Research* 47(4), 363-75.
- "... basing policy prescriptions on statistical summaries of probabilistic models (which are predictions) can lead to misleading policy prescriptions if out-of-sample predictive heuristics are ignored."
 - In a word: overfitting

Civil wars

Table I. Variables included in the Fearon & Laitin model

Variable	Statistically significant at 0.05 level	
Prior War	Yes	
GDP per capita	Yes	
Population	Yes	
Mountainous Terrain	Yes	
Non-contiguous State	No	
Oil Exporter	Yes	
New State	Yes	
Instability	Yes	
Democracy	No	
Ethnic Fractionalization	No	
Religious Fractionalization	No	

^{*} based on Fearon and Laitin, 2003: Table 1, Column 1.

Table II. Variables included in the Collier & Hoeffler model

Variable	Statistically significa at 0.05 level
Commodity Dependence	Yes
Squared Commodity Dependence	Yes
Male Secondary Schooling	Yes
GDP Growth	Yes
Peace Duration	Yes
Geographic Dispersion	Yes
Population	Yes
Social Fractionalization	Yes
Ethnic Dominance	No

^{*}based on Collier and Hoeffler, 2004: Table 5, column 5.

- Based on logistic regression
- Widely used to guide policy
 - World Bank, House of Representatives
 - ► The New Yorker, The New York Times, etc.

Civil wars

• But: Strikingly poor performance on in-sample prediction

Table III. Number of correctly predicted onsets and false positives at varying cut-points

	Fearon & Laitin model	
Threshold	Correctly predicted	False positives
0.5	0/107	0
0.3	1/107	3
0.1	15/107	66

	Collier & Hoeffler model		
Threshold	Correctly predicted	False positives	
0.5	3/46	5	
0.3	10/46	20	
0.1	34/46	110	

Cross validation

Procedure

- Split data into k "folds" (equally sized groups)
- Withholding one fold, re-estimate model
- Test predictive power of model on withheld group (AUC)

Receiver operating characteristic (ROC) curve

- We use area under the ROC curve (AUC) as a heuristic measure of predictiveness
 - ▶ Intuitively, increasing AUC implies TPR > FPR
- (From the people who brought you instructional television...)

Tricks and missteps

- Bias-variance tradeoff
 - k = n (LOOCV): higher variance (low variance among training sets), but lower bias
 - k < n (k-fold): lower variance, but higher bias (overestimating prediction error)</p>
- General consensus is that it might be better to overestimate prediction error (conservative bias)
 - Also, LOOCV is "more expensive"
- Don't do (supervised) feature selection before model validation!
 - Will overestimate AUC (drastically)

Cross validation: pretty easy to implement!

```
# Function to divide data into folds randomly
fold <- function(data, k) {
  data <- data[sample(nrow(data)),] # Shuffle data
  data %<>% mutate(fold = cut(seg(1:nrow(data)), breaks = k, labels=FALSE))
  return(data)
}
# Function to cross-validate data on given model (curried)
cv.predict.logit <- function(data, dv, model.fx, k) {
  data %<>% fold(k) # Fold data
  aucs <- c()
  for(i in 1:k) {
    # Divide data into train and test sets
    train <- data %>% filter(fold != i)
    test <- data %>% filter(fold == i)
    # Estimate model on training data
    mx <- model.fx(data=train)
    # Predict on test data and calculate AUC
    preds <- predict(mx. newdata=test, type="response")</pre>
    AUC <- somers2(preds, test[[dv]])[1]
    aucs[i] <- AUC
  return(mean(aucs, na.rm=TRUE)) # Yield mean AUC
# Function to rerun CV results n times and average AUCs
crossval <- function(data, dv, model.fx, k, n) {
  aucs <- replicate(n, cv.predict.logit(data, dv, model.fx, k))
 return(aucs)
}
```

Back to civil war

```
# Define Collier & Hoeffler model
ch.form <- as.factor(warsa) ~ sxp + sxp2 + secm + gy1 + peace + geo
ch.mx <- Curry(glm, formula=ch.form, family=binomial(link=logit))
# Define Fearon & Laitin model
fl.form <- as.factor(onset) ~ warl + gdpenl + lpopl1 + lmtnest + nc
fl.mx <- Curry(glm, formula=fl.form, family=binomial(link=logit))</pre>
# Perform cross-validation
k \leftarrow 4 # Set k folds
ch.auc <- cv.predict.logit(ch, "warsa", ch.mx, k)</pre>
fl.auc <- cv.predict.logit(fl, "onset", fl.mx, k)</pre>
c(ch.auc, fl.auc)
```

[1] 0.8090876 0.7423249

Calculating a stable AUC

- Sensitive to dataset randomization during "folding"
 - Not too much to worry about here (usually)
- Sensitive to choice of k
 - Low k: upward bias in AUC
 - ▶ High k: higher variance in AUC

Sensitivity to randomization: F&L

```
k <- 4
n <- 200  # Set n CV cycles
ch.aucs <- crossval(ch, "warsa", ch.mx, k, n)</pre>
```


- mean over N cycles
- AUC in first cycle

Sensitivity to randomization: C&H

```
k <- 4
n <- 200  # Set n CV cycles
fl.aucs <- crossval(fl, "onset", fl.mx, k, n)</pre>
```


- mean over N cycles
- AUC in first cycle

Sensitivity to choice of k: F&L

```
n <- 100
list(k4 = crossval(fl, "onset", fl.mx, 4, n),
    k10 = crossval(fl, "onset", fl.mx, 10, n),
    k20 = crossval(fl, "onset", fl.mx, 20, n),
    k100 = crossval(fl, "onset", fl.mx, 100, n),
    k500 = crossval(fl, "onset", fl.mx, 500, n)) ->
fl.aucs.ks
```

Sensitivity to choice of k: F&L

Using as id variables
Using as id variables

Conclusion: why might we care?

- Technical tradeoff between variable significance vs. model predictiveness (Ward et al. 2010; Lo et al. 2015)
- If we really think our models explain causal effects, shouldn't they be predictive? (Watts 2014)
 - Especially if we're basing policy on our findings
- Distinguishing origins from effects (Sewell 1996; Pierson 2000; Clemens 2007)