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Where We’ve Been and Where We’re Going...

Last Week
I random variables
I joint distributions

This Week
I Monday: Point Estimation

F sampling and sampling distributions
F point estimates
F properties (bias, variance, consistency)

I Wednesday: Interval Estimation
F confidence intervals
F comparing two groups

Next Week
I hypothesis testing
I what is regression?

Long Run
I probability → inference → regression

Questions?
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Where We’ve Been and Where We’re Going...

Inference: given that we observe something in the data, what is our best
guess of what it will be in other samples?

For the last few classes we have talked about probability—that is, if
we knew how the world worked, we are describing what kind of data
we should expect.

Now we want to move the other way. If we have a set of data, can we
estimate the various parts of the probability distributions that we have
talked about. Can we estimate the mean, the variance, the
covariance, etc?

Moving forward this is going to be very important. Why? Because we
are going to want to estimate the population conditional expectation
in regression.
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Primary Goals for This Week

We want to be able to interpret the numbers in this table (and a couple of
numbers that can be derived from these numbers).
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An Overview
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An Overview

Population Distribution 
Y ~ ?(μ, σ2)

Estimand /Parameter
μ, σ2

Sample

(Y1, Y2,…,YN)

Estimator/Statistic

ĝ(Y1, Y2,…,YN)

Estimate
ĝ(Y1 = y1,Y2 = y2 , … , YN = yN)

Stewart (Princeton) Week 3: Learning From Random Samples September 26/28, 2016 6 / 141



1 Populations, Sampling, Sampling Distributions
Conceptual
Mathematical

2 Overview of Point Estimation

3 Properties of Estimators

4 Review and Example

5 Fun With Hidden Populations

6 Interval Estimation

7 Large Sample Intervals for a Mean
Simple Example
Kuklinski Example

8 Small Sample Intervals for a Mean

9 Comparing Two Groups

10 Fun With Correlation

11 Appendix: χ2 and t-distribution
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Populations

Typically, we want to learn about the distribution of random variable
(or set of random variables) for a population of interest.

e.g. the distribution of votes for Hillary Clinton in the population of
registered voters in the United States. This is an example of a finite
population.

Sometimes the population will be more abstract, such as the
population of all possible television ads. This is an example of an
infinite population.

With either a finite or infinite population our main goal in inference is
to learn about the population distribution or particular aspects of that
distribution, like the mean or variance, which we call a population
parameter (or just parameter).
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Population Distribution

We sometimes call the population distribution the data generating
process and represent it with a pmf or pdf, f (x ; θ).

Ideally we would place no restrictions on f and learn everything we
can about it from the data. This nonparametric approach is difficult
due to the fact that the space of possible distributions is vast!

Instead, we will often make a parametric assumption and assume that
the formula for f is known up to some unknown parameters.

Thus, f has two parts: the known part which is the formula for the
pmf/pdf (sometimes called the parametric model and comes from the
distributional assumptions) and the unknown part, which are the
parameters, θ.
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Population Distribution

For instance, suppose we have a binary r.v. such as intending to vote
for Hillary Clinton (X = 1). Then we might assume that the
population distribution is Bernoulli with unknown probability of
X = 1, θ.

Thus we would have:

f (x ; θ) = θx(1− θ)1−x

Our goal is to learn about the probability of someone voting for
Hillary Clinton from a sample of draws from this distribution.

Probability tells us what types of samples we should expect for
different values of θ.

For some problems, such as estimating the mean of a distribution, we
actually won’t need to specify a parametric model for the distribution
allowing us to take an agnostic view of statistics.
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Using Random Samples to Estimate Population Parameters

Let’s look at possible estimators µ̂ for the (unobserved) mean income in the
population µ.

How can we use sample data to estimate µ?

If we think of a sample of size n as randomly sampled with replacement from the
population, then Y1, . . . ,Yn are independently and identically distributed (i.i.d.)
random variables with E [Yi ] = µ and V [Yi ] = σ2 for all i ∈ {1, ..., n}.

In R, we can draw an i.i.d. random sample of size n from population by

sample(population, size=n, replace=TRUE)

where population is a vector that contains the Yi values for all units in the
population.

Our estimators, µ̂, are functions of Y1, . . . ,Yn and will therefore be random
variables with their own probability distributions.
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Why Samples?

The population is infinite (e.g., ballot order randomization process).

The population is large (e.g., all Southern adults with telephones).

The population includes counterfactuals.

Even if our population is limited to the surveyed individuals in the
Kuklinski et al. study, we might take the population of interest to
include potential responses for each individual to both the treatment
and baseline questions. For each individual we must sample one of
these two responses (because we cannot credibly ask both questions).

This occurs whenever we are interested in making causal inferences.
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Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the unobserved
population distribution, which can be characterized by parameters.

Estimands are the parameters that we aim to
estimate. Often written with greek letters (e.g.
µ, θ, population mean) : 1

N

∑N
i=1 yi

Estimators are functions of sample data (i.e.
statistics) which we use to learn about the
estimands. Often denoted with a “hat” (e.g.
µ̂, θ̂)

Estimates are particular values of estimators
that are realized in a given sample (e.g. sample
mean): 1

n

∑n
i=1 yi
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What Are We Estimating?

Our goal is to learn about the data generating process that generated
the sample

We might assume that the data Y1, . . . ,Yn are i.i.d. draws from the
population distribution with p.m.f. or p.d.f. of a certain form fY ()
indexed by unknown parameters θ

Even without a full probability model we can estimate particular
properties of a distribution such as the mean E [Yi ] = µ or the
variance V [Yi ] = σ2

An estimator θ̂ of some parameter θ, is a function of the sample
θ̂ = h(Y1, . . . ,Yn) and thus is a random variable.
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Why Study Estimators?

Two Goals:
1 Inference: How much uncertainty do we have in this estimate?
2 Evaluate Estimators: How do we choose which estimator to use?

We will consider the hypothetical sampling distribution of estimates
we would have obtained if we had drawn repeated samples of size n
from the population.

In real applications, we cannot draw repeated samples, so we attempt
to approximate the sampling distribution (either by resampling or by
mathematical formulas)
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Sampling Distribution of the Sample Mean

Consider a toy example where we have the population and can construct
sampling distributions.

Repeated Sampling Procedure:

1 Take a simple random sample of size n = 4.

2 Calculate the sample mean.

3 Repeat steps 1 and 2 at least 10,000 times.

4 Plot the sampling distribution of the sample means (maybe as a
histogram).
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Repeated Sampling Procedure

# population data

ypop <- c(rep(0,0),rep(1,17),rep(2,10),rep(3,4))

# simulate the sampling distribution of the sample mean

SamDistMeans <- replicate(10000, mean(sample(ypop,size=4,replace=TRUE)))
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Sampling Distribution of the Sample Mean

Mean Number of Baseline Angering Items
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Sampling Distribution of the Sample Standard Deviation

We can consider sampling distributions for other sample statistics (e.g.,
the sample standard deviation).

Repeated Sampling Procedure:

1 Take a simple random sample of size n = 4.

2 Calculate the sample standard deviation.

3 Repeat steps 1 and 2 at least 10,000 times.

4 Plot the sampling distribution of the sample standard deviations
(maybe as a histogram).
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Sampling Distribution of the Sample Standard Deviation

SD of Number of Baseline Angering Items
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Standard Error

We refer to the standard deviation of a sampling distribution as a standard
error.

Two Points of Potential Confusion:

Each sampling distribution has its own standard deviation, and
therefore its own standard error. (.35 for mean, .30 for sd)

Some people refer to an estimated standard error as the standard
error.
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Bootstrapped Sampling Distributions

In real applications, we cannot draw repeated samples from the
population, so we must approximate the sampling distribution (either by
resampling or by mathematical formulas).

The resampling procedure that we will use in this class is called
bootstrapping (resamples with replacement of size n from the sample).

Because we will not have actual sampling distributions, we cannot actually
calculate standard errors (we can only approximate them).
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Southern Responses to Baseline List

# of angering items 0 1 2 3

# of responses 2 37 66 34

ysam <- c(rep(0,2),rep(1,37),rep(2,66),rep(3,34))

mean(ysam) # sample mean

# Bootstrapping

BootMeans <- replicate(

10000,

mean(sample(ysam,size=139,replace=TRUE))

)

sd(BootMeans) # estimated standard error
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> ysam <- c(rep(0,2),rep(1,37),rep(2,66),rep(3,34))

>

> mean(ysam) # sample mean

[1] 1.949640

>

> BootMeans <- replicate(

+ 10000,

+ mean(sample(ysam,size=n,replace=TRUE))

+ )

>

> sd(BootMeans) # estimated standard error

[1] 0.06234988
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Bootstrapped Sampling Distribution of the Sample Mean

Bootstrap Mean Number of Baseline Angering Items
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1 Populations, Sampling, Sampling Distributions
Conceptual
Mathematical

2 Overview of Point Estimation

3 Properties of Estimators

4 Review and Example

5 Fun With Hidden Populations

6 Interval Estimation

7 Large Sample Intervals for a Mean
Simple Example
Kuklinski Example

8 Small Sample Intervals for a Mean

9 Comparing Two Groups

10 Fun With Correlation

11 Appendix: χ2 and t-distribution
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Independence for Random Variables

Recall:

Definition (Independence of Random Variables)

Two random variables Y and X are independent if

fX ,Y (x , y) = fX (x)fY (y)

for all x and y . We write this as Y⊥⊥X .

Independence implies
fY |X (y |x) = fY (y)

and thus
E [Y |X = x ] = E [Y ]
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Notation for Sampling Distributions

Suppose we took a simple random sample with replacement from the
population.

We say that X1,X2, . . .Xn are identically and independently distributed
from a population distribution with a mean (E [X1] = µ) and a variance
(V [X1] = σ2).

Then we write X1,X2, . . .Xn ∼i .i .d ?(µ, σ2)

Stewart (Princeton) Week 3: Learning From Random Samples September 26/28, 2016 28 / 141



Describing the Sampling Distribution for the Mean

We would like a full description of the sampling distribution for the mean,
but it will be useful to separate this description into three parts.

If we assume that X1, . . .Xn ∼i .i .d ?(µ, σ2), then we would like to
identify the following things about X n.

E [X n]

V [X n]

?
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Expectation of X n

Again, let X1,X2, . . .Xn be identically and independently distributed from
a population distribution with a mean (E [X1] = µ) and a variance
(V [X1] = σ2). Using the properties of expectation, calculate

E [X n] = E [
1

n

∑
i=1

Xi ]

=?
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Variance of X n

Again, let X1,X2, . . .Xn be identically and independently distributed from
a population distribution with a mean (E [X1] = µ) and a variance
(V [X1] = σ2). Using the properties of variances, calculate

V [X n] = V [
1

n

n∑
i=1

Xi ]

=?
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Question:

What is the standard deviation of X n, also known as the standard error of
X n?

A) σ
n

B) σ
n−1

C) σ√
n

D) σ√
n−1

Stewart (Princeton) Week 3: Learning From Random Samples September 26/28, 2016 32 / 141



What about the “?”

If X1, . . . ,Xn ∼i .i .d . N(µ, σ2), then

X n ∼ N(µ, σ
2

n )

What if X1, . . . ,Xn are not normally distributed?
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Bernoulli (Coin Flip) Distribution

Population Distribution
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Poisson (Count) Distribution

Population Distribution
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Uniform Distribution

Population Distribution
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Why would this be true?

Images from Hyperbole and a Half by Allie Brosh.
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The Central Limit Theorem

In the previous slides, as n increases, the sampling distribution of X n

appeared to become more bell-shaped. This is the basic implication of the
Central Limit Theorem:

If X1, . . . ,Xn ∼i .i .d .?(µ, σ2) and n is large, then

X n ∼approx N(µ,
σ2

n
)
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The Central Limit Theorem: What are we glossing over?

To understand the Central Limit Theorem mathematically we need a few
basic definitions in place first.

Definition (Convergence in Probability)

A sequence X1, ...,Xn of random variables converges in probability towards
a real number a if, for all accuracy levels ε > 0,

lim
n→∞

Pr
(
|Xn − a| ≥ ε

)
= 0

We write this as
Xn

p−→ a or plim
n→∞

Xn = a.
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The Central Limit Theorem: What are we glossing over?

Definition (Law of Large Numbers)

Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables, each with finite mean
µ. Then for all ε > 0,

X n
p−→ µ as n→∞

or equivalently,
lim

n→∞
Pr
(
|X n − µ| ≥ ε

)
= 0

where X n is the sample mean.

Example: Mean of N independent tosses of a coin:
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The Central Limit Theorem: What are we glossing over?

Definition (Convergence in Distribution)

Consider a sequence of random variables X1, ...,Xn, each with CDFs F1, ...,Fn.
The sequence is said to converge in distribution to a limiting random variable X
with CDF F if

lim
n→∞

Fn(x) = F (x),

for every point x at which F is continuous. We write this as

XN
d→ X .

As n grows, the distribution of Xn converges to the distribution of X .

Convergence in probability is a special case of convergence in distribution in
which the distribution converges to a degenerate distribution (i.e. a
probability distribution which only takes a single value).
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The Central Limit Theorem: What are we glossing over?

Definition (Lindeberg-Lévy Central Limit Theorem)

Let X1, ...,Xn a sequence of i.i.d. random variables each with mean µ and
variance σ2 <∞. Then, for any population distribution of X ,

√
n(X n − µ)

d−→ N (0, σ2).

As n grows, the
√
n-scaled sample mean converges to a normal

random variable.

CLT also implies that the standardized sample mean converges to a
standard normal random variable:

Zn ≡
X n − E

[
X n

]√
V
[
X n

] =
X n − µ
σ/
√
n

d−→ N (0, 1).

Note that CLT holds for a random sample from any population
distribution (with finite mean and variance) — what a convenient
result!
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Question:

As the number of observations in a dataset increases, which of the
following is true?

A) The distribution of X becomes more normally distributed.

B) The distribution of X becomes more normally distributed.

C) Both statements are true.
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Point Estimation

Suppose we are primarily interested in specific characteristics of the
population distribution.

For example, suppose we are primarily interested in E [X ].

We refer to characteristics of the population distribution (e.g., E [X ]) as
parameters. These are often denoted with a greek letter (e.g. µ).

We use a statistic (e.g., X ) to estimate a parameter, and we will denote
this with a hat (e.g. µ̂). A statistic is a function of the sample.
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Why Point Estimation?

Estimating one number is typically easier than estimating many (or an
infinite number of) numbers.

The question of interest may be answerable with single characteristic
of the distribution (e.g., if E [Y ]− E [X ] identifies the proportion
angered by the sensitive item, then it may be sufficient to estimate
E [Y ] and E [X ])
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Estimators for µ

Some possible estimators µ̂ for the balance point µ:

A) X n = 1
n (X1 + · · ·+ Xn), the sample average

B) X̃n = median(X1, . . . ,Xn), the sample median

Clearly, one of these estimators is better than the other, but how can we
define “better”?
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Age population distribution in blue, sampling distributions in red
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Methods of Finding Estimators

We will primarily discuss the Method of Least Squares for finding
estimators in this course. However, many of the estimators we discuss can
also be derived by Method of Moments or Method of Maximum Likelihood
(covered in Soc504).

When estimating simple features of a distribution we can use the plug-in
principle, the idea that you write down the feature of the distribution you
are interested in and estimate with the sample analog. Formally this is
using the Empirical CDF to estimate features of the population.
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Desirable Properties of Estimators

Sometimes there are many possible estimators for a given parameter.
Which one should we choose?

We’d like an estimator that gets the right answer on average.

We’d like an estimator that doesn’t change much from sample to
sample.

We’d like an estimator that gets closer to the right answer
(probabilistically) as the sample size increases.

We’d like an estimator that has a known sampling distribution
(approximately) when the sample size is large.
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Properties of Estimators
Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.

Finite-sample Properties (apply for any sample size):

Unbiasedness: Is the sampling distribution of our estimator centered at the
true parameter value? E [µ̂] = µ

Efficiency: Is the variance of the sampling distribution of our estimator
reasonably small? V [µ̂1] < V [µ̂2]

Asymptotic Properties (kick in when n is large):

Consistency: As our sample size grows to infinity, does the sampling
distribution of our estimator converge to the true parameter value?

Asymptotic Normality: As our sample size grows large, does the sampling
distribution of our estimator approach a normal distribution?
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1: Bias (Not Getting the Right Answer on Average)

Definition

Bias is the expected difference between the estimator and the parameter.
Over repeated samples, an unbiased estimator is right on average.

Bias(µ̂) = E [µ̂− E [X ]]

= E [µ̂]− µ

Bias is not the difference between a particular estimate and the parameter.
For example,

Bias(X n) 6= E [xn − E [X ]]

An estimator is unbiased iff:

Bias(µ̂) = 0
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Example: Estimators for Population Mean

Candidate estimators:

1 µ̂1 = Y1 (the first observation)

2 µ̂2 = 1
2(Y1 + Yn) (average of the first and last observation)

3 µ̂3 = 42

4 µ̂4 = Y n (the sample average)

How do we choose between these estimators?
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Bias of Example Estimators

Which of these estimators are unbiased?

1 E [Y1 − µ] = µ− µ = 0

2 E [12(Y1 + Yn)− µ] = 1
2(E [Y1] + E [Yn])− µ = 1

2(µ+ µ)− µ = 0

3 E [42− µ] = 42− µ
4 E [Y n − µ] = 1

n

∑n
1 E [Yi ]− µ = µ− µ = 0

Estimators 1,2, and 4 are unbiased because they get the right answer
on average.

Estimator 3 is biased.
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Age population distribution in blue, sampling distributions in red
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2: Efficiency (doesn’t change much sample to sample)

How should we choose among unbiased estimators?

All else equal, we prefer estimators that have a sampling distribution with
smaller variance.

Definition (Efficiency)

If θ̂1 and θ̂2 are two estimators of θ, then θ̂1 is more efficient relative to θ̂2 iff

V [θ̂1] < V [θ̂2]

Under repeated sampling, estimates based on θ̂1 are likely to be closer to θ

Note that this does not imply that a particular estimate is always close to
the true parameter value

The standard deviation of the sampling distribution of an estimator,
√

V [θ̂],

is often called the standard error of the estimator
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Variance of Example Estimators

What is the variance of our estimators?

1 V [Y1] = σ2

2 V [12(Y1 + Yn)] = 1
4V [Y1 + Yn] = 1

4(σ2 + σ2) = 1
2σ

2

3 V [42] = 0

4 V [Y n] = 1
n2
∑n

1 V [Yi ] = 1
n2
nσ2 = 1

nσ
2

Among the unbiased estimators, the sample average has the smallest
variance. This means that Estimator 4 (the sample average) is likely to be
closer to the true value µ, than Estimators 1 and 2.
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Age population distribution in blue, sampling distributions in red
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3-4: Asymptotic Evaluations (what happens as sample size
increases)

Unbiasedness and efficiency are finite-sample properties of estimators,
which hold regardless of sample size

Estimators also have asymptotic properties, i.e., the characteristics of
sampling distributions when sample size becomes infinitely large

To define asymptotic properties, consider a sequence of estimators at
increasing sample sizes:

θ̂1, θ̂2, ..., θ̂n

For example, the sequence of sample means (X̄n) is defined as:

X̄1, X̄2, ..., X̄n = X1,
X1 + X2

2
, ...,

X1 + · · ·Xn

n

Asymptotic properties of an estimator are defined by the behavior of
θ̂1, ...θ̂n when n goes to infinity.
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Stochastic Convergence

When a sequence of random variables stabilizes to a certain
probabilistic behavior as n→∞, the sequence is said to show
stochastic convergence.

Two types of stochastic convergence are of particular importance:

1 Convergence in probability: values in the sequence eventually take a
constant value
(i.e. the limiting distribution is a point mass)

2 Convergence in distribution: values in the sequence continue to vary,
but the variation eventually comes to follow an unchanging distribution
(i.e. the limiting distribution is a well characterized distribution)
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Convergence in Probability
Definition (Convergence in Probability)

A sequence X1, ...,Xn of random variables converges in probability towards a real
number a if, for all accuracy levels ε > 0,

lim
n→∞

Pr
(
|Xn − a| ≥ ε

)
= 0

We write this as
Xn

p−→ a or plim
n→∞

Xn = a.

As n increases, almost all of the PDF/PMF of Xn will be concentrated in
the ε-interval around a, [a− ε, a + ε]

A sufficient (but not necessary) condition for convergence in probability:

E [Xn]→ a and V [Xn]→ 0 as n→∞

For example, the sample mean X̄n converges to the population mean µ in
probability because

E [X̄n] = µ and V [X̄n] = σ2/n→ 0 as n→∞
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3: Consistency (does it get closer to the right answer as
sample size increases)

Definition
An estimator θn is consistent if the sequence θ1, ..., θn converges in probability to
the true parameter value θ as sample size n grows to infinity:

θn
p−→ θ or plim

n→∞
θn = θ

Often seen as a minimal requirement for estimators

A consistent estimator may still perform badly in small samples

Two ways to verify consistency:

1 Analytic: Often easier to check if E [θn]→ θ and V [θn]→ 0
2 Simulation: Increase n and see how the sampling distribution changes

Does unbiasedness imply consistency?

Does consistency imply unbiasedness?
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Deriving Consistency of Estimators

Our candidate estimators:

1 µ̂1 = Y1

2 µ̂2 = 4

3 µ̂3 = Y n ≡ 1
n (Y1 + · · ·+ Yn)

4 µ̂4 = Ỹn ≡ 1
n+5(Y1 + · · ·+ Yn)

Which of these estimators are consistent for µ?

1 E [µ̂1] = µ and V [µ̂1] = σ2

2 E [µ̂2] = 4 and V [µ̂2] = 0

3 E [µ̂3] = µ and V [µ̂3] = 1
nσ

2

4 E [µ̂4] = n
n+5µ and V [µ̂4] = n

(n+5)2
σ2
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Consistency

The sample mean is a consistent
estimator for µ.

X n ∼approx N

(
µ,
σ2

n

)
As n increases, σ2

n approaches 0.
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Inconsistency

An estimator can be inconsistent in several ways:

The sampling distribution collapses around the wrong value

The sampling distribution never collapses around anything
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Inconsistency

Consider the median estimator: X̃n =
median(Y1, ...,Yn) Is this estimator
consistent for the expectation?
n = 125100
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4: Asymptotic Distribution (known sampling distribution
for large sample size)

We are also interested in the shape of the sampling distribution of an
estimator as the sample size increases.

The sampling distributions of many estimators converge towards a normal
distribution.

For example, we’ve seen that the sampling distribution of the sample mean
converges to the normal distribution.
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Mean Squared Error

How can we choose between an unbiased estimator and a biased, but more
efficient estimator?

Definition (Mean Squared Error)

To compare estimators in terms of both efficiency and unbiasedness we can use
the Mean Squared Error (MSE), the expected squared difference between θ̂ and θ:

MSE (θ̂) = E [(θ̂ − θ)2] = Bias(θ̂)2 + V (θ̂) =
[
E [θ̂]− θ

]2
+ V (θ̂)
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Review and Example

Gerber, Green, and Larimer (American Political Science Review, 2008)
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Basic Analysis

load("gerber_green_larimer.RData")

## turn turnout variable into a numeric

social$voted <- 1 * (social$voted == "Yes")

neigh.mean <- mean(social$voted[social$treatment == "Neighbors"])

neigh.mean

contr.mean <- mean(social$voted[social$treatment == "Civic Duty"])

contr.mean

neigh.mean - contr.mean

.378− .315 = .063

Is this a “real” effect? Is it big?
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Population vs. Sampling Distribution
We want to think about the sampling distribution of the estimator.

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40

00
60

00

Population
Distribution

Sampling
Distribution

But remember that we only get to see one draw from the sampling
distribution. Thus ideally we want an estimator with good properties.
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. . .

The estimator is difference in means

The estimate is 0.063

Suppose we have an estimate of the estimator’s standard error
ŜE(θ̂) = 0.02.

What if there was no difference in means in the population
(µy − µx = 0)?

By asymptotic Normality (θ̂ − 0)/SE(θ̂) ∼ N(0, 1)

By the properties of Normals, we know that this implies that
θ̂ ∼ N (0, SE(θ̂))
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Asymptotic Normality

We can plot this to get a feel for it.

sampling.dist
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Does the observed difference in means seem plausible if there really were
no difference between the two groups in the population?
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Summary of Today

Sampling distributions provide away for studying the properties of
sample statistics.

We must usually make assumptions and/or appeal to a large n in
order to derive a sampling distribution.

Choosing a point estimator may require tradeoffs between desirable
properties.

Next Class: interval estimation
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Summary of Properties

Concept Criteria Intuition
Unbiasedness E [µ̂] = µ Right on average

Efficiency V [µ̂1] < V [µ̂2] Low variance

Consistency µ̂n
p→ µ Converge to estimand as n→∞

Asymptotic Normality µ̂n
approx.∼ N(µ, σ

2

n ) Approximately normal in large n
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Fun with Hidden Populations

Dennis M. Feehan and Matthew J. Salganik “Generalizing
the Network Scale-Up Method: A New Estimator for the

Size of Hidden Populations”

Slides graciously provided by Matt Salganik.
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Scale-up Estimator

Basic insight from Bernard et al. (1989)
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Network scale-up method

N̂T =
∑

i yi,T∑
i d̂i
× N

N̂T = 2
10 × 30 = 6
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Network scale-up method

N̂T =
∑

i yi,T∑
i d̂i
× N

N̂T = 2
10 × 30 = 6
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If yi ,k ∼ Bin(di ,Nk/N)︸ ︷︷ ︸
basic scale-up model

, then maximum likelihood estimator is

N̂T =

∑
i yi ,T∑
i d̂i

× N

N̂T : number of people in the target population

yi ,T : number of people in target population known by person i

d̂i : estimated number of people known by person i

N: number of people in the population

See Killworth et al., (1998)
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Target population Location Citation

Mortality in earthquake Mexico City, Mexico Bernard et al. (1989)
Rape victims Mexico City, Mexico Bernard et al. (1991)
HIV prevalence, rape, & homelessness U.S. Killworth et al. (1998)
Heroin use 14 U.S. cities Kadushin et al. (2006)
Choking incidents in children Italy Snidero et al. (2007, 2009)
Groups most at-risk for HIV/AIDS Ukraine Paniotto et al. (2009)
Heavy drug users Curitiba, Brazil Salganik et al. (2011)
Men who have sex with men Japan Ezoe et al. (2012)
Groups most at risk for HIV/AIDS Almaty, Kazakhstan Scutelniciuc (2012a)
Groups most at risk for HIV/AIDS Moldova Scutelniciuc (2012b)
Groups most at risk for HIV/AIDS Thailand Aramrattan (2012)
Groups most at risk for HIV/AIDS Chongqing, China Guo (2012)
Groups most at risk for HIV/AIDS Rwanda Rwanda Biomedical Center (2012)
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Does it Work? Under What Conditions?

Feehan and Salganik study the properties of the estimator

They show that for the estimator to be unbiased and consistent
requires a particular assumption that average personal network size is
the same in the hidden population as the remainder.

This was unknown up to this point!

Analyzing the estimator let them see that the problem can be
addressed by collecting a new kind of data on the visibility of hidden
population (which can easily be collected with respondent driven
sampling)
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Meta points

Studying estimators can not only expose problems but suggest
solutions

Another example of creative and interesting ideas coming from the
applied people

Formalizing methods is important because it is what allows them to
be studied- it was a long time before anyone discovered the
bias/consistency concerns!
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Where We’ve Been and Where We’re Going...

Last Week
I random variables
I joint distributions

This Week
I Monday: Point Estimation

F sampling and sampling distributions
F point estimates
F properties (bias, variance, consistency)

I Wednesday: Interval Estimation
F confidence intervals
F comparing two groups

Next Week
I hypothesis testing
I what is regression?

Long Run
I probability → inference → regression

Questions?
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Last Time

Population Distribution 
Y ~ ?(μ, σ2)

Estimand /Parameter
μ, σ2

Sample

(Y1, Y2,…,YN)

Estimator/Statistic

ĝ(Y1, Y2,…,YN)

Estimate
ĝ(Y1 = y1,Y2 = y2 , … , YN = yN)

Stewart (Princeton) Week 3: Learning From Random Samples September 26/28, 2016 86 / 141



1 Populations, Sampling, Sampling Distributions
Conceptual
Mathematical

2 Overview of Point Estimation

3 Properties of Estimators

4 Review and Example

5 Fun With Hidden Populations

6 Interval Estimation

7 Large Sample Intervals for a Mean
Simple Example
Kuklinski Example

8 Small Sample Intervals for a Mean

9 Comparing Two Groups

10 Fun With Correlation

11 Appendix: χ2 and t-distribution
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What is Interval Estimation?

A point estimator θ̂ estimates a scalar population parameter θ with a
single number.

However, because we are dealing with a random sample, we might
also want to report uncertainty in our estimate.

An interval estimator for θ takes the following form:

[θ̂lower , θ̂upper ]

where θ̂lower and θ̂upper are random quantities that vary from sample
to sample.

The interval represents the range of possible values within which we
estimate the true value of θ to fall.

An interval estimate is a realized value from an interval estimator.
The estimated interval typically forms what we call a confidence
interval, which we will define shortly.

Stewart (Princeton) Week 3: Learning From Random Samples September 26/28, 2016 88 / 141



Normal Population with Known σ2

Suppose we have an i.i.d. random sample of size n, X1, ...,Xn, from X ∼ N(µ, 1).

From previous lecture, we know that the sampling distribution of the sample
average is:

X n ∼ N(µ, σ2/n) = N(µ, 1/n)

Therefore, the standardized sample average is distributed as follows:

X n − µ
1/
√
n
∼ N(0, 1)

This implies

Pr

(
−1.96 <

X n − µ
1/
√
n
< 1.96

)
= .95

Why?
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CDF of the Standard Normal Distribution
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CDF(1.96) = .975
CDF(−1.96) = .025
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Constructing a Confidence Interval with Known σ2

So we know that:

Pr

(
−1.96 <

X n − µ
1/
√
n
< 1.96

)
= .95

Rearranging yields:

Pr
(
X n − 1.96/

√
n < µ < X n + 1.96/

√
n
)

= .95

This implies that the following interval estimator[
X n − 1.96/

√
n , X n + 1.96/

√
n
]

contains the true population mean µ with probability 0.95.

We call this estimator a 95% confidence interval for µ.
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Kuklinski Example

Y ∼approx ?(?, ?)?(µ, ?)?(µ, σ2/n)N(µ, σ2/n)

Suppose the 1,161 respondents in
the Kuklinski data set were the
population, with
µ = 42.7 and σ2 = 257.9.

If we sampled 100 respondents, the
sampling distribution of Y 100 is:

Y 100 ∼approx N(42.7, 2.579)

µ̂ = Y100
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The standard error of Y

The standard error of the sample
mean is the standard deviation of the
sampling distribution for Y :

SE (Y ) =

√
V (Y ) =

σ√
n

What is the probability that Y falls
within 1.96 SEs of µ?

But the 1,161 is actually the sample
(not the population).

Sampling distribution of  Y100
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Normal Population with Unknown σ2

In practice, it is rarely the case that we somehow know the true value of
σ2.

Suppose now that we have an i.i.d. random sample of size n X1, ...,Xn

from X ∼ N(µ, σ2), where σ2 is unknown. Then, as before,

X n ∼ N(µ, σ2/n) and so
X n − µ
σ/
√
n
∼ N(0, 1).

Previously, we then constructed the interval:

[
X n − zα/2σ/

√
n, X n + zα/2σ/

√
n
]

But we can not directly use this now because σ2 is unknown.

Instead, we need an estimator of σ2, σ̂2.
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Estimators for the Population Variance
Two possible estimators of population variance:

S2
0n =

1

n

n∑
i=1

(Xi − X n)2

S2
1n =

1

n − 1

n∑
i=1

(Xi − X n)2

Which do we prefer? Let’s check properties of these estimators.

1 Unbiasedness: We can show (after some algebra) that

E [S2
0n] =

n − 1

n
σ2 and E [S2

1n] = σ2

2 Consistency: We can show that

S2
0n

p→ σ2 and S2
1n

p→ σ2

S2
1n (unbiased and consistent) is commonly called the sample variance.
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Estimating σ and the SE

Returning to Kulinski et. al. . .

We will use the sample variance:

S2 =
1

n − 1

n∑
i=1

(Xi − X n)2

and thus the sample standard deviation can be written as

S =
√
S2

We will plug in S for σ and our estimated standard error will be

ŜE [µ̂] =
S√
n
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95% Confidence Intervals

If X1, ...,Xn are i.i.d. and n is large,
then

µ̂ ∼ N(µ, (ŜE [µ̂])2)

µ̂− µ ∼ N(0, (ŜE [µ̂])2)

µ̂− µ
ŜE [µ̂]

∼ N(0, 1)

We know that

P

(
−1.96 ≤ µ̂− µ

ŜE [µ̂]
≤ 1.96

)
= 95%

Sampling distribution of    
µµ̂ −− µµ

SÊ((µµ̂))
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95% Confidence Intervals

We can work backwards from this:

P

(
−1.96 ≤ µ̂− µ

ŜE [µ̂]
≤ 1.96

)
= 95%

P
(
−1.96ŜE [µ̂] ≤ µ̂− µ ≤ 1.96ŜE [µ̂]

)
= 95%

P
(
µ̂− 1.96ŜE [µ̂] ≤ µ ≤ µ̂+ 1.96ŜE [µ̂]

)
= 95%

The random quantities in this statement are µ̂ and ŜE [µ̂].
Once the data are observed, nothing is random!
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

0 20 40 60 80 100

2) Calculate µ̂ and ŜE [µ̂]:

µ̂ = 43.53 ŜE [µ̂] = 1.555

3) Construct the 95% CI:

(40.5, 46.6)
Age

35 40 45 50
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What does this mean?

By repeating this process, we
generate the sampling distribution of
the 95% CIs.

Most of the CIs cover the true µ;
some do not.

In the long run, we expect 95% of
the CIs generated to contain the true
value.

Age

35 40 45 50
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Interpreting a Confidence Interval

This can be tricky, so let’s break it down.

Imagine we implement the interval estimator X n ± 1.96/
√
n for a particular

sample and obtain the estimate of [2.5, 4].

Does this mean that there is a .95 probability that the true parameter value
µ lies between these two particular numbers? No!

Confidence intervals are easy to construct, but difficult to interpret:

I Each confidence interval estimate from a particular sample either
contains µ or not

I However, if we were to repeatedly calculate the interval estimator over
many random samples from the same population, 95% of the time the
constructed confidence intervals would cover µ

I Therefore, we refer to .95 as the coverage probability
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What makes a good confidence interval?

1 The coverage probability: how likely it is that the interval covers the
truth.

2 The length of the confidence interval:

I Infinite intervals (−∞,∞) have coverage probability 1
I For a probability, a confidence interval of [0, 1] also have coverage

probability 1
I Zero-length intervals, like [Ȳ , Ȳ ], have coverage probability 0

Best: for a fixed confidence level/coverage probability, find the
smallest interval
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Is 95% all there is?

Our 95% CI had the following form: µ̂± 1.96ŜE [µ̂]

Remember where 1.96 came from?

P

(
−1.96 ≤ µ̂− µ

ŜE [µ̂]
≤ 1.96

)
= 95%

What if we want a different percentage?

P

(
−z ≤ µ̂− µ

ŜE [µ̂]
≤ z

)
= (1− α)%

How can we find z?
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Normal PDF

We know that z comes from the
probability in the tails of the
standard normal distribution.

When (1− α) = 0.95, we want to
pick z so that 2.5% of the probability
is in each tail.

This gives us a value of 1.96 for z .

−4 −2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4

z

F
(z

)
−1.96 1.96
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Normal PDF

What if we want a 50% confidence
interval?

When (1− α) = 0.50, we want to
pick z so that 25% of the probability
is in each tail.

This gives us a value of 0.67 for z .
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(1− α)% Confidence Intervals

In general, let zα/2 be the value associated with (1− α)% coverage:

P

(
−zα/2 ≤

µ̂− µ
ŜE [µ̂]

≤ zα/2

)
= (1− α)%

P
(
µ̂− zα/2ŜE [µ̂] ≤ µ ≤ µ̂+ zα/2ŜE [µ̂]

)
= (1− α)%

We usually construct the (1− α)% confidence interval with the following
formula.

µ̂± zα/2ŜE [µ̂]
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1 Populations, Sampling, Sampling Distributions
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Kuklinski Example

8 Small Sample Intervals for a Mean

9 Comparing Two Groups

10 Fun With Correlation

11 Appendix: χ2 and t-distribution
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The problem with small samples

Up to this point, we have relied on large sample sizes to construct
confidence intervals.

If the sample is large enough, then the sampling distribution of the sample
mean follows a normal distribution.

If the sample is large enough, then the sample standard deviation (S) is a
good approximation for the population standard deviation (σ).

When the sample size is small, we need to know something about the
distribution in order to construct confidence intervals with the correct
coverage (because we can’t appeal to the CLT or assume that S is a good
approximation of σ).
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Canonical Small Sample Example

What happens if we use the
large-sample formula?

The percent alcohol in Guinness beer
is distributed N(4.2, 0.09).

Take 100 six-packs of Guinness and
construct CIs of the form

µ̂± 1.96ŜE [µ̂]

In this sample, only 88 of the 100 CIs
cover the true value.

Percent alcohol

3.9 4.0 4.1 4.2 4.3 4.4 4.5
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The t distribution

If X is normally distributed, then X is normally distributed even in small
samples. Assume

X ∼ N(µ, σ2)

If we know σ, then

X − µ
σ√
n

∼ N(0, 1)

We rarely know σ and have to use an estimate instead:

X − µ
s√
n

∼ ??tn−1
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The t distribution

Since we have to estimate σ, the

distribution of X−µ
s√
n

is still

bell-shaped but is more spread out.

As the sample size increases, our
estimates of σ improve and extreme

values of X−µ
s√
n

become less likely.

Eventually the t distribution
converges to the standard normal.
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(1− α)% Confidence Intervals

In general, let tα/2 be the value associated with (1− α)% coverage:

P

(
−tα/2 ≤

µ̂− µ
ŜE [µ̂]

≤ tα/2

)
= (1− α)%

P
(
µ̂− tα/2ŜE [µ̂] ≤ µ ≤ µ̂+ tα/2ŜE [µ̂]

)
= (1− α)%

We usually construct the (1− α)% confidence interval with the following
formula.

µ̂± tα/2ŜE [µ̂]

Stewart (Princeton) Week 3: Learning From Random Samples September 26/28, 2016 112 / 141



Small Sample Example

When we generated 95% CIs with
the large sample formula

µ̂± 1.96ŜE [µ̂]

only 88 out of 100 intervals covered
the true value.

When we use the correct
small-sample formula

µ̂± tα/2ŜE [µ̂]2.57ŜE [µ̂]

95 of the 100 CIs in this sample
cover the truth.

Percent alcohol

3.9 4.0 4.1 4.2 4.3 4.4 4.5

Percent alcohol

3.9 4.0 4.1 4.2 4.3 4.4 4.5
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Another Rationale for the t-Distribution

Does X n ∼ N(µ,S2
n/n), which would imply X n−µ

Sn/
√
n
∼ N(0, 1)?

No, because Sn is a random variable instead of a parameter (like σ).

Thus, we need to derive the sampling distribution of the new random
variable. It turns out that Tn follows Student’s t-distribution with n − 1
degrees of freedom.

Theorem (Distribution of t-Value from a Normal Population)

Suppose we have an i.i.d. random sample of size n from N(µ, σ2). Then,
the sample mean X n standardized with the estimated standard error
Sn/
√
n satisfies,

Tn ≡
X n − µ
Sn/
√
n
∼ τn−1

Appendix
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Kuklinski Example Returns

The Kuklinski et al. (1997) article compares responses to the baseline list
with responses to the treatment list.

How should we estimate the difference between the two groups?

How should we obtain a confidence interval for our estimate?
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Comparing Two Groups

We will often assume the following when comparing two groups,

X11,X12, ...,X1n1 ∼i .i .d .?(µ1, σ
2
1)

X21,X22, ...,X2n2 ∼i .i .d .?(µ2, σ
2
2)

The two samples are independent of each other.

We will usually be interested in comparing µ1 to µ2, although we will
sometimes need to compare σ21 to σ22 in order to make the first comparison.
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Sampling Distribution for X 1 − X 2

What is the expected value of X 1 − X 2?

E [X 1 − X 2] = E [X 1]− E [X 2]

=
1

n1

∑
E [X1i ]−

1

n2

∑
E [X2j ]

=
1

n1

∑
µ1 −

1

n2

∑
µ2

= µ1 − µ2
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Sampling Distribution for X 1 − X 2

What is the variance of X 1 − X 2?

Var [X 1 − X 2] = Var [X 1] + Var [X 2]

=
1

n21

∑
Var [X1i ] +

1

n22

∑
Var [X2j ]

=
1

n21

∑
σ21 +

1

n22

∑
σ22

=
σ21
n1

+
σ22
n2
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Sampling Distribution for X 1 − X 2

What is the distributional form for X 1 − X 2?

X 1 is distributed ∼ N(µ1,
σ2
1

n1
).

X 2 is distributed ∼ N(µ2,
σ2
2

n2
).

X 1 − X 2 is distributed ∼ N(µ1 − µ2,
σ2
1

n1
+

σ2
2

n2
).
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CIs for µ1 − µ2

Using the same type of argument that we used for the univariate case, we
write a (1− α)% CI as the following:

X 1 − X 2 ± zα/2

√
σ21
n1

+
σ22
n2
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Interval estimation of the population proportion

Let’s say that we have a sample of iid Bernoulli random variables,
Y1, . . . ,Yn, where each takes Yi = 1 with probability π. Note that this is
also the population proportion of ones. We have shown in previous weeks
that the expectation of one of these variable is just the probability of seeing
a 1: E [Yi ] = π.

The variance of a Bernoulli random variable is a simple function of its mean:
Var(Yi ) = π(1− π).

Problem Show that the sample proportion, π̂ = 1
n

∑n
i=1 Yi , of the above iid

Bernoulli sample, is unbiased for the true population proportion, π, and that

the sampling variance is equal to π(1−π)
n .

Note that if we have an estimate of the population proportion, π̂, then we

also have an estimate of the sampling variance: π̂(1−π̂)
n .

Given the facts from the previous problem, we just apply the same logic
from the population mean to show the following confidence interval:

P

(
π̂ − zα/2 ×

√
π̂(1− π̂)

n
≤ π ≤ π̂ + zα/2 ×

√
π̂(1− π̂)

n

)
= (1− α)
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Gerber, Green, and Larimer experiment

Let’s go back to the Gerber, Green, and Larimer experiment from last
class. Here are the results of their experiment:

Let’s use what we have learned up until now and the information in
the table to calculate a 95% confidence interval for the difference in
proportions voting between the Neighbors group and the Civic Duty
group.

You may assume that the samples with in each group are iid and the
two samples are independent.
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Calculating the CI for social pressure effect

We know distribution of sample proportion turned among Civic Duty
group π̂C ∼ N(πC , (πC (1− πC ))/nC )

Sample proportions are just sample means, so we can do difference in
means:

π̂N − π̂C ∼ N

(
πN − πC ,

√
SE 2

N + SE 2
C

)
Replace the variances with our estimates:

π̂N − π̂C ∼ N

(
πN − πC ,

√
ŜE

2

N + ŜE
2

C

)
Apply usual formula to get 95% confidence interval:

(π̂N − π̂C )± 1.96×
√

ŜE
2

N + ŜE
2

C

Remember that we can calculate the sample variance for a sample
proportion like so: (π̂C (1− π̂C ))/nC
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Gerber, Green, and Larimer experiment

Now, we calculate the 95% confidence interval:

(π̂N − π̂C )± 1.96×

√
π̂N(1− π̂N)

nN
+
π̂C (1− π̂C )

nC

n.n <- 38201

samp.var.n <- (0.378 * (1 - 0.378))/n.n

n.c <- 38218

samp.var.c <- (0.315 * (1 - 0.315))/n.c

se.diff <- sqrt(samp.var.n + samp.var.c)

## lower bound

(0.378 - 0.315) - 1.96 * se.diff

## [1] 0.05626701

## upper bound

(0.378 - 0.315) + 1.96 * se.diff

## [1] 0.06973299

Thus, the confidence interval for the effect is [0.056267, 0.069733].
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Summary of Interval Estimation

Interval estimates provide a means of assessing uncertainty.

Interval estimators have sampling distributions.

Interval estimates should be interpreted in terms of repeated sampling.
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Next Week

Hypothesis testing

What is regression?

Reading
I Aronow and Miller 3.2.2
I Fox Chapter 2: What is Regression Analysis?
I Fox Chapter 5.1 Simple Regression
I Aronow and Miller 4.1.1 (bivariate regression)
I “Momentous Sprint at the 2156 Olympics” by Andrew J Tatem et al.

Nature 2004
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Fun with Anscombe’s Quartet
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All yield same regression model!
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Fun Beyond Correlation

Reshef, D. N.; Reshef, Y. A.; Finucane, H. K.; Grossman, S. R.; McVean, G.;
Turnbaugh, P. J.; Lander, E. S.; Mitzenmacher, M.; Sabeti, P. C. (2011).
”Detecting Novel Associations in Large Data Sets”. Science 334 (6062):
1518-1524.
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Fun with Correlation Part 2
Enter the Maximal Information Coefficient
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Fun with Correlation Part 2

Concerns with MIC

low power

originality?

heuristic binning mechanism

issues with equitability criterion

This is still an open issue!
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A Sketch of why the Student t-distribution

Back

We have need the distribution of X n−µ
Sn/
√
n

Sn = 1
n−1

∑n
i=1(Xi − X n)2 is now a random variable

Because we already derived the sampling distribution for X n−µ
σ2/
√
n

, we

want to derive the sampling distribution for Sn
σ2 because the σ2 term

will cancel.

Some math will show our distribution is going to be of the form
∑

Z 2

where Z ∼ N(0, 1).

Let’s figure out what distribution that will be
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χ2 Distribution

Suppose Z ∼ Normal(0, 1).
Consider X = Z 2

FX (x) = P(X ≤ x)

= P(Z 2 ≤ x)

= P(−
√
x ≤ Z ≤ x)

=
1√
2π

∫ √x
−
√
x
e−

z2

2 dt

= FZ (
√
x)− FZ (−

√
x)

The pdf then is

∂FX (x)

∂x
= fZ (

√
x)

1

2
√
x

+ fZ (−
√
x)

1

2
√
x
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Definition

Suppose X is a continuous random variable with X ≥ 0, with pdf

f (x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

Then we will say X is a χ2 distribution with n degrees of freedom.
Equivalently,

X ∼ χ2(n)
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χ2 Properties

Suppose X ∼ χ2(n)

E [X ] = E

[
N∑
i=1

Z 2
i

]

=
N∑
i=1

E [Z 2
i ]

var(Zi ) = E [Z 2
i ]− E [Zi ]

2

1 = E [Z 2
i ]− 0

E [X ] = N
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χ2 Properties

Suppose X ∼ χ2(n)

var(X ) =
N∑
i=1

var(Z 2
i )

=
N∑
i=1

(
E [Z 4

i ]− E [Zi ]
2
)

=
N∑
i=1

(3− 1) = 2N
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Student’s t-Distribution

Definition

Suppose Z ∼ Normal(0, 1) and U ∼ χ2(n). Define the random variable Y
as,

Y =
Z√
U
n

If Z and U are independent then Y ∼ t(n), with pdf

f (x) =
Γ(n+1

2 )
√
πnΓ(n2 )

(
1 +

x2

n

)− n+1
2

We will use the t-distribution extensively for test-statistics
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Student’s t-Distribution, Properties
Suppose n = 1, Cauchy distribution

0 2000 4000 6000 8000 10000

0
5

10
15

20

Trial

M
ea

n

If X ∼ Cauchy(1), then:

E [X ] = undefined
var(X ) = undefined
If X ∼ t(2)
E[X] = 0
var(X ) = undefined
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Student’s t-Distribution, Properties

Suppose n > 2, then
var(X ) = n

n−2
As n→∞ var(X )→ 1.
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