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Where We’ve Been and Where We’re Going...

Last Week

I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I Monday:

F summarize one random variable using expectation and variance
F show how to condition on a variable

I Wednesday:
F properties of joint distributions
F conditional expectations
F covariance, correlation, independence

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression

Questions?
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1 Random Variables and Distributions
What is a Random Variable?
Discrete Distributions
Continuous Distributions

2 Characteristics of Distributions
Central Tendency
Measures of Dispersion

3 Conditional Distributions

4 Fun with Sensitive Questions

5 Appendix: Why the Mean?

6 Joint Distributions
Discrete Random Variable
Continuous Random Variable

7 Conditional Expectation

8 Properties
Independence
Covariance and Correlation
Conditional Independence

9 Famous Distributions

10 Fun With Spam
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Example: New Hampshire Primaries

Evidence suggests that candidates gain a small advantage from ballot
order.

As a response, in 2008 New Hampshire chose a letter from the alphabet
and then listed the candidates in alphabetical order starting with that
letter.

We can use probability to assess the “fairness” of this process.

We will do this by introducing a random variable X to be Barack Obama’s
position on the 2008 New Hampshire primary ballot.
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Example: Assessing Racial Prejudice

We often want to ask sensitive questions which a survey respondent is
unlikely to honestly answer

A list experiment asks respondents how many items on a list they
agree with

I for example, what proportion of people would be upset by a black
family moving in next door to them (Kuklinski et al 1997).

I randomly split survey into two halves
I first half ask how many of the following items upset you:

1. the federal government increasing the tax on gasoline
2. professional athletes getting million-dollar salaries
3. large corporations polluting the environment.

I second half, add a fourth item

4. a black family moving in next door

I use the answers to infer the proportion upset by the fourth item.

To do this we need to understand random variables
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What is a Random Variable?

Intuition: functions that map outcomes to numbers.

Formal: X is a function that maps the sample space to the real numbers.

Imagine an experiment of two coin flips

S =
{
{heads, heads}, {heads, tails}, {tails, heads}, {tails, tails}

}
we could define a random variable X (s) to be the function that returns the
number of heads for each element of S.

X ({heads, heads}) = 2

X ({heads, tails}) = 1

X ({tails, heads}) = 1

X ({tails, tails}) = 0
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A Brief Note on Notation

We almost always use capital roman letters for the “name” of the
random variable such as X

We refer to a particular value with a lower case letter x

So we might write P(X = x) to be the probability that the number of
heads is equal to x .

For more complicated random variables we often write out values as
follows

X =

{
1 if heads

0 if tails

Sometimes the sample space is already numeric so its more obvious
(e.g. how long until the train arrives)
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Quick FAQ

Why have random variables at all?
it makes the math easier, even across very different sample spaces.

Why are they random variables?
realizations of a stochastic process (i.e. randomness in the outcome,
not the mapping)

Is it really easier this way? It seems hard.
yep. seriously. let’s do an example!
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not the mapping)
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NH Ballot Order Example

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

X =



1

2
3
4
5
6
7
8

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

X is a random variable indicating Obama’s position on the ballot. Highlighted letters are those
leading to a given ballot position. Highlighted individual is first.
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Discrete Distributions

For discrete distributions, the random variable X takes on a finite, or
a countably infinite number of values.

A common shorthand is to think of discrete RVs taking on distinct
values.

A probability mass function (pmf) and a cumulative distribution
function (cdf) are two common ways to define the probability
distribution for a discrete RV.

Probability mass functions provide a compact way to represent
information about how likely various outcomes are.
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Where do Distributions Come From?

The probabilities associated with each realization of the r.v. come from
the underlying experiment and sample space.
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Where do Distributions Come From?

The probabilities associated with each realization of the r.v. come from
the underlying experiment and sample space.

Sample
space
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Where do Distributions Come From?

The probabilities associated with each realization of the r.v. come from
the underlying experiment and sample space.
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Where do Distributions Come From?

The probabilities associated with each realization of the r.v. come from
the underlying experiment and sample space.
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Where do Distributions Come From?

The probabilities associated with each realization of the r.v. come from
the underlying experiment and sample space.
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Where do Distributions Come From?

The probabilities associated with each realization of the r.v. come from
the underlying experiment and sample space.
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Example: New Hampshire

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

f (x) =



4/26 x = 1

4/26 x = 2
2/26 x = 3
1/26 x = 4
1/26 x = 5
1/26 x = 6

10/26 x = 7
3/26 x = 8

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
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Discrete Probability Mass Functions

A probability mass function f (x) of a random variable X is a non-negative
function that gives the probability that X = x and

∑
x f (x) = 1.
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NH Obama Ballot Position PMF Plot
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NH Obama Ballot Position PMF Plot
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Discrete Cumulative Distribution Function

A cumulative distribution function F (x) of a random variable X is a
non-decreasing function that gives the probability that X ≤ x .
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NH Obama Ballot Position CDF Plot
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NH Obama Ballot Position CDF Plot

o
•

i
Babar

BADOO.tt#E

•

BBqqf.io

Drafted

0

b.

a B.

o Board

µ...
tyranny

g..
a

area.

o

.B.org.inDuskE

8*EIo
°

I •

Boob
0

J

Cf*MMao.fpaaa.
°

o
'

•Bpao→
.

0

threads08a.m.
'

tag
th

N
. Dakin

o Branca

• 0

B.a.
para

a.m.

0

Goateed
o

I 2 3 4 5 6 7 8

×

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 16 / 164



Some Important Discrete Distributions

Let X be a binary variable with P(X = 1) = p and, thus,
P(X = 0) = 1− p, where p ∈ [0, 1]. Then we say that X follows a
Bernoulli distribution with the following pmf:

fX (x) = px(1− p)1−x for x ∈ {0, 1}.

Probably the most famous distribution for a discrete r.v. is the
discrete uniform distribution that puts equal probability on each value
that X can take:

fX (x) =

{
1/k for x = 1, . . . , k

0 otherwise

We can summarize these distributions with one number
(e.g. the probability of variables being 1)
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Empirical Distributions

An empirical mass function f̂ (x) of a variable X is a non-negative function
that gives the frequency of the value x from data on X .

An empirical cumulative distribution function F̂ (x) of a variable X is a
non-decreasing function that gives the frequency of values of X less than x .
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Example: Assessing Racial Prejudice

We often want to ask sensitive questions which a survey respondent is
unlikely to honestly answer

A list experiment asks respondents how many items on a list they
agree with

I for example, what proportion of people would be upset by a black
family moving in next door to them (Kuklinski et al 1997).

I randomly split survey into two halves
I first half ask how many of the following items upset you:

1. the federal government increasing the tax on gasoline
2. professional athletes getting million-dollar salaries
3. large corporations polluting the environment.

I second half, add a fourth item

4. a black family moving in next door

I use the answers to infer the proportion upset by the fourth item.

To do this we need to understand random variables
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Racial Prejudice Example (Kuklinski et al, 1997)

X = # of angering items on the baseline list for Southerners:
x 0 1 2 3

f (x) ? ? ? ?

f̂ (x) 0.02 0.27 0.43 0.28

F̂ (x) 0.02 0.29 0.72 1.00

Y = # of angering items on the treatment list for Southerners:
y 0 1 2 3 4

f (y) ? ? ? ? ?

f̂ (y) 0.02 0.20 0.40 0.28 0.10

F̂ (y) 0.02 0.22 0.62 0.90 1.00
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Continuous Distributions

Continuous random variables take on an uncountably infinite number
of values.

This is often a useful approximation when a variable takes on many
values.

A probability density function (pdf) and a cumulative distribution
function (cdf) are two common ways to define the distribution for a
continuous RV.
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Example: Age in the Racial Prejudice Example

Let X be the age of a randomly
selected individual from the Kuklinski
et al. (1997) data set.
The probability distribution for this
variable is well approximated by a
probability density function.
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Continuous Cumulative Distribution Functions

A cumulative distribution function
F (x) of a random variable X is a
non-decreasing function that gives
the probability that X ≤ x . For a
continuous RV, the cdf is continuous.

F (x) =

∫ x

−∞
f (z)dz
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From PDFs to CDFs

F (x) = P(X ≤ x) =

∫ x

−∞
f (z)dz

.52 = P(X ≤ 40) =

∫ 40

−∞
f (z)dz
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From CDFs to PDFs

f (x) =
dF (x)

dx

.015 =
dF (50)

dx
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Subtleties of Continuous Densities
Remember- the height of the curve is not the probability of x occurring.

To get the probability that X will fall in some region, you need the area
under the curve.
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Expectation

The expected value of a random variable X is denoted by E [X ] and is a
measure of central tendency of X . Roughly speaking, an expected value is
like a weighted average (weighted by probability of occurrence).

The expected value of a discrete random variable X is defined as

E [X ] =
∑
all x

x · fX (x).

The expected value of a continuous random variable X is defined as

E [X ] =

∫ ∞
−∞

x · fX (x)dx .
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What did we expect for Obama’s NH position?

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

4/26 × 1

4/26 × 2
2/26 × 3
1/26 × 4
1/26 × 5
1/26 × 6

10/26 × 7

+

3/26 × 8

4.88

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
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Interpreting Discrete Expected Value

The expected value for a discrete random variable is the balance point of
the mass function.
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Interpreting Continuous Expected Value
The expected value for a continuous random variable is the balance point
of the density function.
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Why the Expected Value (Balance Point)?

It is the probabilistic equivalent of the sample average (mean).

It is a reasonable measure for the “center” of the data.

We have some intuition about balance points.

It has some useful and convenient properties.

Appendix
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Population Mean as an Expected Value

Let x1, . . . , xN be our population. Then the population mean is the
following

x̄ =
1

N

N∑
i=1

xi

This can be re-written in the following form:

x̄ =
N∑
i=1

{
xi ·

1

N

}
Note how this resembles the definition of discrete expected value. If all
values distinct (i.e. xi 6= xj for all i 6= j).

x̄ =
∑
all xi

xi · f (xi ), where f (xi ) =
1

N
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Property 1: Homogeneity

The expected value of a constant is the constant.

The expectation of a constant times a RV is the constant times the
expectation of the RV.

Suppose a and b are constants and X is a random variable. Then

E [b] = b

E [aX ] = aE [X ]

E [aX + b] = aE [X ] + b
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Property 2: Additivity

Expectations of sums are sums of expectations (always).

Suppose we have k random variables X1, . . . ,Xk . If E [Xi ] exists for all
i = 1, . . . , k , then

E

[
k∑

i=1

Xi

]
= E [X1] + · · ·+ E [Xk ]
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Property 3: LOTUS

Law of the Unconscious Statistician: If g(X ) is a function of a discrete
random variable, then

E [g(X )] =
∑
x

g(x)fX (x),

essentially the expected value of the transformation of the random variable
is just the weighted average of the transformed outcomes.

We will come back to this later. But it means that we can can calculate
the expected value of g(X ) without explicitly knowing the distribution of
g(X )!
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Racial Prejudice Example

X = # of angering items on the baseline list for Southerners:
x 0 1 2 3 Sum

f̂ (x) 0.02 0.27 0.43 0.28 1.00

x · f̂ (x) 0.00 0.27 0.86 0.84 1.97

Y = # of angering items on the treatment list for Southerners:
y 0 1 2 3 4 Sum

f̂ (y) 0.03 0.20 0.40 0.28 0.10 1.00

y · f̂ (y) 0.00 0.20 0.80 0.84 0.40 2.24
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Identifying the Percent Angry

Assume that Y = X + A, where for a randomly sampled respondent,

Y = the number of total angering items

X = the number of angering items on baseline list

A = 1 if angered by a black family moving in next door

A = 0 if not angered by a black family moving in next door.

Exercises for Later:

Then we know that E [Y ]− E [X ] = E [A], but can you prove it?

Noting that A is a Bernoulli RV, how can we interpret E [A]?

What properties and assumptions were necessary?
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Variance

The expected value of a function g() of the random variable X , written
g(X ), is denoted by E [g(X )] and is a measure of central tendency of
g(X ).

The variance is a special case of this, and the variance of a random
variable X (a measure of its dispersion) is given by

V [X ] = E [(X − E [X ])2]

It is the expectation of the squared distances from the mean.
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For a discrete random variable X

V [X ] =
∑
all x

(x − E [X ])2fX (x)

For a continuous random variable X

V [X ] =

∫ ∞
−∞

(x − E [X ])2fX (x)dx
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Variance Measures the Spread of a Distribution
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Why the Variance?

It is a reasonable measure for the “spread” of a distribution.

The Normal distribution (bell shaped with thin tails) is completely
determined by its expected value (location) and variance (spread).

The square root of the variance is the standard deviation.

The variance and standard deviation have some useful properties.
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Property 1

The variance of a constant is zero.

The variance of a constant times a RV is the constant squared times
the variance of the RV.

Suppose a and b are constants and X is a random variable. Then

V [b] = 0

V [aX ] = a2V [X ]

V [aX + b] = a2V [X ] + 0
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Property 2

Variances of sums of independent RVs are sums of variances.

Suppose we have k independent random variables X1, . . . ,Xk . If V [Xi ]
exists for all i = 1, . . . , k , then

V

[
k∑

i=1

Xi

]
= V [X1] + · · ·+ V [Xk ]

NB: Technically independence is sufficient but not necessary.
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What was the variance of Obama’s NH position?

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

4/26 × (1− 4.88)2

4/26 × (2− 4.88)2

2/26 × (3− 4.88)2

1/26 × (4− 4.88)2

1/26 × (5− 4.88)2

1/26 × (6− 4.88)2

10/26 × (7− 4.88)2

+

3/26 × (8− 4.88)2

2.93

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

Does variance matter for fairness?
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Interpreting Continuous Standard Deviation
The standard deviation for a continuous random variable is a measure of
the spread of the pdf.
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Do we lose anything when we use the list experiment?

Y = # of angering items on the treatment list for Southerners:
y 0 1 2 3 4 Sum

f̂ (y) 0.03 0.20 0.40 0.28 0.10 1.00

(y − 2.24)2 · f̂ (y) 0.15 0.31 0.02 0.16 0.31 0.95

What is the maximum variance for a Bernoulli random variable?
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Joint and Conditional Distributions

We can describe more than one random variable with joint and
conditional distributions.

For example, suppose we define X = 0 (Non-southern), 1 (Southern)
and Y = “number of angering items” for a randomly selected
respondent receiving the treatment list.

Furthermore, we define the probability that this respondent will have
the values X = x and Y = y to be f (y , x) = πyx
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Babka

)

v ✓

✓ ✓ ✓ V •  • •  •

✓ . . •  •
•  •

• a n na  °
n , 0  9

u U n u ^ ^ ^ ^

✓ ✓Y =
•  • . . y .

• .
• •

•  •

j j " "

U U n
U ^ ^

v U
) ) ) 1

f ( oo

oro..amo'!eaa. ) = Tou
.

a.a.

j it

)
go.a.gr

bypassed •. B→•maaa.aa.

j it
8.6bar

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 49 / 164



Joint and Conditional Distributions

We can describe more than one random variable with joint and
conditional distributions.

For example, suppose we define X = 0 (Non-southern), 1 (Southern)
and Y = “number of angering items” for a randomly selected
respondent receiving the treatment list.

Furthermore, we define the probability that this respondent will have
the values X = x and Y = y to be f (y , x) = πyx

Madcap Akbar

X = hyponym

by
Embargoesftp.qq.AT?9Eam.r.aaa&aoTB.

Babka

)

v ✓

✓ ✓ ✓ V •  • •  •

✓ . . •  •
•  •

• a n na  °
n , 0  9

u U n u ^ ^ ^ ^

✓ ✓Y =
•  • . . y .

• .
• •

•  •

j j " "

U U n
U ^ ^

v U
) ) ) 1

f ( oo

oro..amo'!eaa. ) = Tou
.

a.a.

j it

)
go.a.gr

bypassed •. B→•maaa.aa.

j it
8.6bar

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 49 / 164



Joint and Conditional Distributions

We can describe more than one random variable with joint and
conditional distributions.

For example, suppose we define X = 0 (Non-southern), 1 (Southern)
and Y = “number of angering items” for a randomly selected
respondent receiving the treatment list.

Furthermore, we define the probability that this respondent will have
the values X = x and Y = y to be f (y , x) = πyx
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Example Conditional Distribution: Binary X, Discrete Y
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Example Conditional Distribution: Binary X, Discrete Y
Although we cannot observe the responses for the entire population, we
can imagine what they might look like as a joint distribution.
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Example Conditional Distribution: Binary X, Discrete Y
Although we cannot observe the responses for the entire population, we
can imagine what they might look like as a joint distribution.

f (y , x) x
y 0 1 f (y)

0 π00 π01 π00 + π01

1 π10 π11 π00 + π01

2 π20 π21 π00 + π01

3 π30 π31 π00 + π01

4 π40 π41 π00 + π01

f (x)
∑4

y=0 πy0
∑4

y=0 πy1
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Discrete Conditional Distribution

Given the joint distribution, we can imagine what the conditional
distribution and the conditional expectations would look like.
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Note that we are just doing what we did before, but now we are doing it
twice. In the next example, we will do it many times.
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Example: Conditional Distribution with “Continuous” Y

Suppose we define X = “number of angering items” and Y = “age” for a
randomly selected respondent receiving the treatment list.
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Example: Conditional Distribution with “Continuous” Y

Suppose we define X = “number of angering items” and Y = “age” for a
randomly selected respondent receiving the treatment list.
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Conditional Expectation Function (CEF)

The conditional expectations form a CEF:

E [Y |X = x ] = h(x)
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Linear CEF Assumption

Often we will assume that the CEF is linear:

E [Y |X = x ] = β0 + β1x
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Linear CEF Assumption
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Linear CEF Assumption
Often we will assume that the CEF is linear:

E [Y |X = x ] = β0 + β1x
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Conditional Variance and Standard Deviation

Similarly, we can assess the conditional standard deviation
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Conditional Variance and Standard Deviation

Similarly, we can assess the conditional standard deviation
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Linear CEF and Constant Variance Assumptions

Often, we assume that variance is the same for all values of x .
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Interpreting the CEF

Because the CEF is defined merely in terms of the larger population and
not in terms of a causal effect (e.g., the causal effect of ”number of
angering items” on Age), we will utilize a descriptive interpretation of β0

and β1.

For this example, β0 is the expected age for an individual that is
angered by zero items

β1 is the expected difference in age between two individuals that have
a one unit difference in the number of angering items.
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Summary

Random variables and probability distribution provide useful
infrastructure for everything we will do this year.

Expected value and variance are two useful characteristics of the
probability distributions associated with random variables.

These concepts can be extended by conditioning on other variables.
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Fun with Sensitive Questions

Graeme Blair
(slides that follow from Graeme)
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Fun with Sensitive Questions

Cannot ask direct questions when there are incentives to conceal
sensitive responses

1 Social pressure

2 Physical retaliation

3 Legal jeopardy
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How to Address Incentives to Conceal

Develop trust with respondents, ask directly

Survey experimental methods

1 Endorsement experiment Evaluation bias

2 List experiment Aggregation

3 Randomized response Random noise
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Bias in Direct Questions on Vote Buying

Estimated rate of vote buying from direct survey item

2.4%

Estimate using list experiment

24.3%

Gonzalez-Ocantos et al. 2011, AJPS

Question text: ”they gave you a gift or did you a favor”
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Survey of Civilians in Afghanistan

2,754 respondents

5 provinces, randomly sampled from 8 Pashtun-dominated provinces
(Helmand, Khost, Kunar, Logar, and Urozgan)

21 districts, randomly sampled within province

204 villages, randomly sampled within district
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Outcomes

”Do you support the goals and policies of the
foreign forces?”
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Endorsement experiment design

Control group

It has recently been proposed to

allow Afghans to vote in direct

elections when selecting leaders

for district councils.

Treatment group

It has recently been proposed by
foreign forces to allow Afghans to

vote in direct elections when

selecting leaders for district

councils.

Provided for under Electoral Law, these direct elections would increase the

transparency of local government as well as its responsiveness to the needs and

priorities of the Afghan people. It would also permit local people to actively

participate in local administration through voting and by advancing their own

candidacy for office in these district councils. How strongly would you support

this policy?

5 I strongly agree with this policy

4 I somewhat agree with this policy

3 I am indifferent to this policy

2 I disagree with this policy

1 I strongly disagree with this policy

Refused

Don’t know
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Conditional results
se

q(
fr

om
 =

 −
2,

 to
 =

 1
.5

, l
en

gt
h 

=
 1

2)

−1.0

−0.5

0.0

0.5

1.0

C
ha

ng
e 

in
 S

up
po

rt
fo

r 
IS

A
F

● ●

●
●

Self or
family

Manteqa
(area)

Victimization
by ISAF by Taliban

se
q(

fr
om

 =
 −

2,
 to

 =
 1

.5
, l

en
gt

h 
=

 1
2)

−1.0

−0.5

0.0

0.5

1.0

C
ha

ng
e 

in
 S

up
po

rt
fo

r 
Ta

lib
an

●
●

●
●

Victimization
by ISAF by Taliban

se
q(

fr
om

 =
 −

2,
 to

 =
 1

.5
, l

en
gt

h 
=

 1
2)

−1.0

−0.5

0.0

0.5

1.0

D
iff

er
en

ce
 in

 C
ha

ng
e

in
 S

up
po

rt
 (

Ta
lib

an
 −

 IS
A

F
)

●

●

● ●

Victimization
by ISAF by Taliban

Controlling for frequency of contact with combatants; education; age; income; Madrassa
schooling; tribe; violence levels in village; district territorial control; . . .

Lyall, Blair, and Imai 2014
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List experiment design

I’m going to read you a list with the names of different groups and individuals

on it. After I read the entire list, I’d like you to tell me how many of these

groups and individuals you broadly support, meaning that you generally agree

with the goals and policies of the group or individual. Please don’t tell me

which ones you generally agree with; only tell me how many groups or individuals

you broadly support.

Control group

Karzai Government

National Solidarity Program

Local Farmers

Treatment group

Karzai Government

National Solidarity Program

Local Farmers

Foreign forces

How many, if any, of these individuals and groups do you support?

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 68 / 164



List experiment design

I’m going to read you a list with the names of different groups and individuals

on it. After I read the entire list, I’d like you to tell me how many of these

groups and individuals you broadly support, meaning that you generally agree

with the goals and policies of the group or individual. Please don’t tell me

which ones you generally agree with; only tell me how many groups or individuals

you broadly support.

Control group

Karzai Government

National Solidarity Program

Local Farmers

Treatment group

Karzai Government

National Solidarity Program

Local Farmers

Foreign forces

How many, if any, of these individuals and groups do you support?

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 68 / 164



Proportion of ISAF Supporters
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Survey

Survey of 2,448 civilians in the Niger Delta

Randomly sampled 204 communities near oil interruption sites and
camps of armed groups

Interviewed 12 people per community
Random walk pattern to select households; Kish grid within household
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Port Harcourt
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Atlantic Ocean

Oil Sabotage
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Warri
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Atlantic Ocean
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Survey

Survey of 2,448 civilians in the Niger Delta

Random sample of 204 communities near and far from oil interruption
sites and armed group camps

Interviewed 12 people per community
Random walk pattern to select households; Kish grid within household

Funded by the International Growth Centre
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Outcome

”Did you share information with militants about their enemies in the
community, state counterinsurgency forces, or oil facility activities?”
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Problems with using list or endorsement experiments

Too sensitive for list experiment

Often difficult to define ”control” condition in endorsement experiment for
behaviors

Alternative: Randomized response technique
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Randomized response technique

How? Introducing random noise

Roll the dice in private

If you roll a 1, tell me ”no”

If you roll a 6, tell me ”yes”

Otherwise, answer: ”Did you share information with armed groups”
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Analysis of the randomized response technique

1 Used fair dice, and actually rolled it.

2 Compliance. Complied with ”forced” response.

3 No Liars. When not forced, answered truthfully.

Proportion answered yes

= 2/3 · Proportion yes to sensitive item + 1/6

Proportion yes to sensitive item

= 3/2 · ( Proportion answered yes − 1/6)
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1. Civilians share information regularly with armed groups

●
Shared information

with armed groups

0 10 20 30 40 50%

Percentage of respondents
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2. Civilians near oil interruptions dominate collaboration

●

●

Oil Attack

in Community

No Oil Attack

0 10 20 30 40 50%

Percentage of respondents
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3. Civilians near armed group camps dominate
collaboration
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Three techniques for sensitive survey items

Endorsement experiment Baseline attitudes

List experiment Aggregation

Randomized response Random noise

Alternative methods

Physical separation from respondents
Scacco 2012

Self-administered questionnaires (e.g. MP3)
Chauchard 2013

Incentives for honest responses
Bursztyn et al. 2014
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Design Advice and Software for Analysis

rr package in R for randomized response
Blair with Yang-Yang Zhou and Kosuke Imai

list package in R for list experiments
Blair with Kosuke Imai

endorse package in R for endorsement experiments
Yuki Shiraito and Kosuke Imai
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1 Random Variables and Distributions
What is a Random Variable?
Discrete Distributions
Continuous Distributions

2 Characteristics of Distributions
Central Tendency
Measures of Dispersion

3 Conditional Distributions

4 Fun with Sensitive Questions

5 Appendix: Why the Mean?

6 Joint Distributions
Discrete Random Variable
Continuous Random Variable

7 Conditional Expectation

8 Properties
Independence
Covariance and Correlation
Conditional Independence

9 Famous Distributions

10 Fun With Spam
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Why Do We Focus on Means?

Back

Population means (ȳ = 1
N

∑N
i=1 yi ) often provide a “good” summary

of the center of the data (and it is relatively easy to tell when they
provide bad summaries).

The accuracy of means is relatively easy to describe.

Randomized experiments identify average causal effects (more on this
later)
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N

∑N
i=1 yi ) often provide a “good” summary

of the center of the data (and it is relatively easy to tell when they
provide bad summaries).

The accuracy of means is relatively easy to describe.

Randomized experiments identify average causal effects (more on this
later)

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 84 / 164



Why Do We Focus on Means?

Back

Population means (ȳ = 1
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The Mean as a Least Squares Summary

Suppose we want to pick a single number (m) for the middle of the data
that summarizes all the values for y , by minimizing the sum of squared
residuals (i.e., least squares).

SSR(m̃) =
N∑
i=1

(yi − m̃)2.

One way to calculate the least squares estimator

1 Calculate the derivative of SSR with respect to m̃

2 Set the derivative equal to 0

3 Solve for m
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The Objective Function for SSR CLlib
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1

SSR(m̃) =
N∑
i=1

(yi − m̃)2

=
N∑
i=1

(y2
i − 2yim̃ + m̃2)

∂SSR(m̃)

∂m̃
=

N∑
i=1

(−2yi + 2m̃)
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The Slope of the Tangent Line for SSR CLlib

0 20 40 60 80 100

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

Sum of Squared Residuals

m~

S
(m~

)

|

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 88 / 164



The Slope of the Tangent Line for SSR CLlib

0 20 40 60 80 100

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

Sum of Squared Residuals

m~

S
(m~

)

|

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 89 / 164



The Slope of the Tangent Line for SSR CLlib
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1

SSR(m̃) =
N∑
i=1

(yi − m̃)2

=
N∑
i=1

(y2
i − 2yim̃ + m̃2)

∂S(m)

∂m̃
=

N∑
i=1

(−2yi + 2m̃)

2

0 =
N∑
i=1

(−2yi + 2m)

3

m =
1

N

N∑
i=1

yi

Therefore, the population mean is a least squares summary.
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Variance and Standard Deviation

Mean is the least squares predictor in terms of SSR.

How small is “least” (i.e., how much spread around the mean)?

Variance and Standard Deviation are useful transformations of SSR
for the mean.

Population Variance

S2 =

∑N
i=1(yi − ȳ)2

N − 1

=
SSR

N − 1

Population Standard Deviation

S =
√
S2
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Mean and Standard Deviation

Histogram of CLlib
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Where We’ve Been and Where We’re Going...

Last Week

I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I Monday:

F summarize one random variable using expectation and variance
F show how to condition on a variable

I Wednesday:
F properties of joint distributions
F conditional expectations
F covariance, correlation, independence

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression

Questions?
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Joint Distributions

We’ve talked about joint probabilities of events—what was the
probability of A and B occurring: P(A ∩ B)

We also talked about the conditional probability of A given that B
occurred.

We also need to think about more than one r.v. at the same time.
I in regression we think about how the distribution of one variable

changes under different values of another variable
I e.g. does running more negative ads decrease election turnout?

The joint distribution of two (or more) variables describes the pairs of
observations that we are more or less likely to see.
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Understanding Joint Distributions

Consider two r.v.s now, X and Y , each on the real line, R.

The pair form a two-dimensional space, or R× R
One realization of the r.v. is a point in that space

X

Y

X

Y

(x , y)
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Understanding Joint Distributions

Imagine we are throwing darts on a two-dimensional board: the joint
distribution tells us where the darts are more likely to land.

Distributions can be limited to a subset of the real line
I e.g. two uniform random variables might be between 0 and 1
I e.g. discrete random variables typically only include integers

With two r.vs. there are now two dimensions to deal with.

Often, we are interested in two random variables that are qualitatively
different:

I Y (response, outcome, dependent variable, etc.)
= the random variable we want to explain, or predict.

I X (predictor, explanatory/independent variable, covariate, etc.)
= the random variable with which we want to explain Y .
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Joint Probability Mass Function

Definition

For two discrete random variables X and Y the joint PMF PX ,Y (x , y) gives the
probability that X = x and Y = y for all x and y :

PX ,Y (x , y) = Pr(X = x and Y = y)

Restrictions:

PX ,Y (x , y) ≥ 0 and
∑

x

∑
y PX ,Y (x , y) = 1.
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Joint Probability Mass Function

Definition

For two discrete random variables X and Y the joint PMF PX ,Y (x , y) gives the
probability that X = x and Y = y for all x and y :

PX ,Y (x , y) = Pr(X = x and Y = y)

Should the U.S. allow more immigrants to come and live here?

X: Education
less HS HS College BA

oppose 0.07 0.22 0.18 0.15
Y: Support neutral 0.02 0.06 0.05 0.05

favor 0.01 0.03 0.04 0.11

With discrete r.v.s this is very similar to thinking about a cross-tab, with
frequencies/ probabilities in the cells instead of raw numbers.
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From Joint to Marginal PMF

Given the joint PMF PX ,Y (x , y) can we recover the marginal PMF PY (y)
(distribution over a single variable)?

X: Education

less HS HS College BA

PY (y)

oppose 0.07 0.21 0.17 0.14

0.62

Y: Support neutral 0.02 0.06 0.05 0.05

0.19

favor 0.01 0.03 0.04 0.10

0.19

To obtain PY (y) we marginalize the joint probability function PX ,Y (x , y)
over X :

PY (y) =
∑
x

PX ,Y (x , y) =
∑
x

Pr(X = x ,Y = y)
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Joint and Marginal Probability Mass Functions
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Why Does Marginalization Work?

Begin with discrete case. Consider jointly distributed discrete random
variables, X and Y . We’ll suppose they have joint pmf,

P(X = x ,Y = y) = p(x , y)

Suppose that the distribution allocates its mass at x1, x2, . . . , xM and
y1, y2, . . . , yN .
Define the conditional mass function P(X = x |Y = y) as,

P(X = x |Y = y) ≡ = p(x |y)

= p(x , y)/p(y)

Then it follows that:

p(x , y) = p(x |y)p(y)

Marginalizing over y to get p(x) is then,

p(xj) =
N∑
i=1

p(xj |yi )p(yi )
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A Table

Y = 0 Y = 1

X = 0 p(0,0) p(0, 1) pX (0)
X = 1 p(1,0) p(1,1) pX (1)

pY (0) pY (1)

pX (0) = p(0|y = 0)p(y = 0) + p(0|y = 1)p(y = 1)

=
0.01

0.26
× 0.26 +

0.05

0.74
× 0.74

= 0.06

pX (1) = p(1|y = 0)p(y = 0) + p(1|y = 1)p(y = 1)

=
0.25

0.26
× 0.26 +

0.69

0.74
× 0.74

= 0.94
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Conditional PMF

Definition

The conditional PMF of Y given X , PY |X (y |x), is the PMF of Y when X
is known to be at a particular value X = x :

PY |X (y |x) =
Pr(X = x and Y = y)

Pr(X = x)
=

PX ,Y (x , y)

PX (x)

Key relationships:

PX ,Y (x , y) = PY |X (y |x)PX (x) (multiplicative rule)

PY |X (y |x) = PX |Y (x |y)PY (y)/PX (x) (Bayes’ rule)

Conditional PMFs are just like ordinary PMFs, but refer to a universe
where the “conditioning event” (X = x) is known to have occurred.

Conditional distributions are key in statistical modeling because they
inform us how the distribution of Y varies across different levels of X .
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Conditional PMFs are just like ordinary PMFs, but refer to a universe
where the “conditioning event” (X = x) is known to have occurred.

Conditional distributions are key in statistical modeling because they
inform us how the distribution of Y varies across different levels of X .
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From Joint to Conditional: PY |X (y |x) =
PX ,Y (x ,y)
PX (x)

Table: Joint PMF PX ,Y (x , y) and Marginal PMFs PX (x),PY (y)

Education
PX ,Y (x , y) less HS HS College BA PY (y)

oppose 0.07 0.22 0.18 0.15 0.62
Support neutral 0.02 0.06 0.05 0.05 0.19

favor 0.01 0.03 0.04 0.11 0.19
PX (x) 0.11 0.32 0.27 0.31 1.00

Table: Conditional PMF PY |X (y |x)

Education
PY |X (y |x) less HS HS College BA

oppose 0.70 0.70 0.65 0.48 0.62
Support neutral 0.20 0.20 0.19 0.17 0.19

favor 0.10 0.10 0.15 0.34 0.19
1.00 1.00 1.00 1.00 1.00
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Joint and Conditional Probability Mass Functions
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1 Random Variables and Distributions
What is a Random Variable?
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Joint Probability Density Function

Definition

For two continuous random variables X and Y the joint PDF fX ,Y (x , y)
gives the density height where X = x and Y = y for all x and y .

The multiplicative rule:

fX ,Y (x , y) = fY |X (y |x)fX (x)

where

fY |X (y |x): Conditional PDF of Y given X = x

fX (x): Marginal PDF of X

Restrictions:∫
x

∫
y fX ,Y (x , y) dy dx = 1
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3D Plot of a Joint Probability Density Function

x

−10
−5

0
5

10

y

−10

−5

0

5

10

z

0.000

0.005

0.010

0.015

Bivariate Normal Distribution: z = fX, Y(x, y)

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 113 / 164



Contour Plot of a Joint Probability Density Function
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From Joint to Marginal PDF
How can we obtain fY (y) from fX ,Y (x , y)?

We marginalize the joint probability function fX ,Y (x , y) over X :

fY (y) =

∫ ∞
−∞

fX ,Y (x , y)dx
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Conditioning on X

Goal in statistical modeling is often to characterize the conditional
distribution of the outcome variable fY |X (y |x) across different levels
of X = x .

Typically, we summarize the conditional distributions with a few
parameters such as the conditional mean of E [Y |X = x ] and the
conditional variance V [Y |X = x ]

Moreover, we are often interested in estimating E [Y |X ], i.e. the
conditional expectation function that describes how the conditional
mean of Y varies across all possible values of X (we sometimes call
this the population regression function)
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Conditional Expectation

Definition (Conditional Expectation (Discrete))

Let Y and X be discrete random variables. The conditional expectation of
Y given X = x is defined as:

E [Y |X = x ] =
∑
y

y Pr(Y = y |X = x) =
∑
y

y PY |X (y |x)

Definition (Conditional Expectation (Continuous))

Let Y and X be continuous random variables. The conditional expectation
of Y given X = x is given by:

E [Y |X = x ] =

∫ ∞
−∞

y fY |X (y |x)dy
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Joint and Conditional Probability Mass Functions
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Conditional PMF PY |X (y |x)
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Conditional Expectation E [Y |X = 1]
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Conditional Expectation Function E [Y |X ]
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Law of Iterated Expectations

Theorem (Law of Iterated Expectations)

For two random variables X and Y ,

E [Y ] = E [E [Y |X ]] =


∑
all x

E [Y |X = x ] · PX (x) (discrete X )∫ ∞
−∞

E [Y |X = x ] · fX (x)dx (continuous X )

Note that the outer expectation is taken with respect to the distribution of X .

Example: Y (support) and X ∈ {1, 0} (gender). Then, the LIE tells us:

E [Y ] = E [E [Y |X ]]

E [Y ]

︸ ︷︷ ︸
Average Support

= E [Y |X = 1]︸ ︷︷ ︸
Average Support|Woman

· PX (1)︸ ︷︷ ︸
Pr(Woman)

+ E [Y |X = 0]︸ ︷︷ ︸
Average Support|Man

· PX (0)︸ ︷︷ ︸
Pr(Man)
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Properties of Conditional Expectation

Conditional expectations have some convenient properties
1 E [c(X )|X ] = c(X ) for any function c(X ).

I Basically, any function of X is a constant with regard to the conditional
expectation. If we know X , then we also know X 2, for instance.

2 If E [Y 2] <∞ and E [g(X )2] <∞ for some function g , then
E [(Y − E [Y |X ])2|X ] ≤ E [(Y − g(X ))2|X ] and
E [(Y − E [Y |X ])2] ≤ E [(Y − g(X ))2]

The second property is quite important. It says that the conditional
expectation is the function of X that minimizes the squared prediction
error for Y across any possible function of X .
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Conditional Variance

Conditional expectation gives us information about the central tendency of
a random variable given another random variable.

We also want to know the conditional variance to understand our
uncertainty about the conditional distribution.

Remember, the conditional distribution of Y |X is basically like any other
probability distribution, so we are going to want to summarize the center
and spread.
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Conditional Variance

Definition
The conditional variance of Y given X = x is defined as:

V [Y |X = x ] =


∑
all y

(y − E [Y |X = x ])2PY |X (y |x) (discrete Y )∫ ∞
−∞

(y − E [Y |X = x ])2fY |X (y |x)dy (continuous Y )

A useful rule related to conditional variance is the law of total variance:

V [Y ]︸ ︷︷ ︸
Total variance

= E [V [Y |X ]]︸ ︷︷ ︸
Average of Group Variances

+ V [E [Y |X ]]︸ ︷︷ ︸
Variance in Group Averages

Example: Y (support) and X ∈ {1, 0} (gender). The LTV says that the total
variance in support can be decomposed into two parts:

1 On average, how much support varies within gender groups (within variance)

2 How much average support varies between gender groups (between variance)
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Conditional Variance Function V [Y |X ]
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1 Random Variables and Distributions
What is a Random Variable?
Discrete Distributions
Continuous Distributions

2 Characteristics of Distributions
Central Tendency
Measures of Dispersion

3 Conditional Distributions

4 Fun with Sensitive Questions

5 Appendix: Why the Mean?

6 Joint Distributions
Discrete Random Variable
Continuous Random Variable

7 Conditional Expectation

8 Properties
Independence
Covariance and Correlation
Conditional Independence

9 Famous Distributions

10 Fun With Spam
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Independence

Definition (Independence of Random Variables)

Two random variables Y and X are independent if

fX ,Y (x , y) = fX (x)fY (y)

for all x and y . We write this as Y⊥⊥X .

Independence implies
fY |X (y |x) = fY (y)

and thus
E [Y |X = x ] = E [Y ]
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Is Y⊥⊥X?
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Expected Values with Independent Random Variables

If random variables X and Y are independent, then

E [XY ] = E [X ]E [Y ]

Proof: For discrete X and Y ,

E [XY ] =
∑
all x

∑
all y

x y PX ,Y (x , y)

=
∑
all x

∑
all y

x y PX (x)PY (y)

=
∑
all x

x PX (x)
∑
all y

y PY (y)

= E [X ]E [Y ]

We can prove the continuous case by following the same steps, with
∑

replaced by
∫

.
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random variables .

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it more
likely to also observe a Y value greater than E [Y ], and vice versa.

Points in upper right and lower
left quadrants (relative to the
means) add to the covariance.

Points in the upper left and
lower right quadrants subtract
from the covariance.

Descriptive Statistics with Simple Linear Regression
Least Squares
Goodness of Fit

Properties of Sample Covariance

sxy =

Pn
i=1(xi − x̄)(yi − ȳ)

n − 1

Points in the upper right and lower left
quadrants (relative to the means) add to
the covariance.

Points in the upper left and lower right
quadrants subtract from the covariance.
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Definition
The covariance of X and Y is defined as:
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random variables .

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it more
likely to also observe a Y value greater than E [Y ], and vice versa.

Points in upper right and lower
left quadrants (relative to the
means) add to the covariance.

Points in the upper left and
lower right quadrants subtract
from the covariance.

Descriptive Statistics with Simple Linear Regression
Least Squares
Goodness of Fit

Properties of Sample Covariance

sxy =

Pn
i=1(xi − x̄)(yi − ȳ)

n − 1

Points in the upper right and lower left
quadrants (relative to the means) add to
the covariance.

Points in the upper left and lower right
quadrants subtract from the covariance.
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Covariance and Independence
Does X⊥⊥Y imply Cov [X ,Y ] = 0?

Yes!

Proof:
Cov [X ,Y ] = E [XY ]− E [X ]E [Y ]

= E [X ]E [Y ]− E [X ]E [Y ] (independence)

= 0.

Does Cov [X ,Y ] = 0 imply X⊥⊥Y ? No!

Counterexample: Suppose X ∈ {−1, 0, 1} with PX (x) = 1/3 and Y = X 2.

Is X⊥⊥Y ? No, because PY |X (y | x) 6= PY (y)
(Learning about X gives meaningful information about Y .)

What is Cov [X ,Y ]?

Cov [X ,Y ] = E [XX 2]− E [X ]E [X 2] = E [X 3]− E [X ]E [X 2]

= E [X ]− E [X ]E [X 2] = 0− 0 · E [X 2] = 0.

Therefore, X⊥⊥Y =⇒ Cov [X ,Y ] = 0, but not vice versa.
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Important Identities for Variances and Covariances

1 For random variables X and Y and constants a, b and c ,

V [aX + bY + c] = a2V [X ] + b2V [Y ] + 2ab Cov [X ,Y ]

2 Important special cases:

V [X + Y ] = V [X ] + V [Y ] + 2Cov [X ,Y ]

V [X − Y ] = V [X ] + V [Y ]− 2Cov [X ,Y ]

3 Furthermore, if X and Y are independent,

V [X ± Y ] = V [X ] + V [Y ]

Proof: Plug in to the definition of variance and expand (try it yourself!)
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Correlation

Cov [X ,Y ] depends not only on the strength of (linear) association
between X and Y , but also the scale of X and Y .

Can we have a pure measure of association that is scale-independent?

Definition (Correlation)

The correlation between two random variables X and Y is defined as

Cor [X ,Y ] =
Cov [X ,Y ]√
V [X ]V [Y ]

=
Cov [X ,Y ]

SD[X ]SD[Y ]
.

Cor [X ,Y ] is a standardized measure of linear association between X
and Y .

Always satisfies: −1 ≤ Cor [X ,Y ] ≤ 1.
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Correlation is Linear

Cor [X ,Y ] = ±1 iff Y = aX + b where a 6= 0.

Like covariance, correlation measures the linear association between
X and Y .
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Conditional Independence

Definition (Conditional Independence of Random Variables)

Random variables Y and X are conditionally independent given Z iff

fX ,Y |Z (x , y |z) = fY |Z (y |z) · fX |Z (x |z)

for all x , y , and z . This is often written as Y⊥⊥X | Z .

Can also be written as

fY |X ,Z (y | x , z) = fY |Z (y | z)

Interpretation: Once we know Z , X contains no meaningful
information about likely values of Y .
(Z has all the information about Y contained in X , if any.)

Y⊥⊥X | Z implies

E [Y |X = x ,Z = z ] = E [Y |Z = z ].
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Is Y⊥⊥X?
Example: X = wealth, Y = support for immigration, Z = education.
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Is Y⊥⊥X |Z?
Example: X = wealth, Y = support for immigration, Z = education.
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Distributions

We like random variables because they take complex real world
phenomena and represent them with a common mathematical
infrastructure
We can work with arbitrary pmf/pdfs but we will often work with
particular families of distributions

I members of the same family have similar forms determined by
parameters

I the parameters determine the shape of the distribution

When we can work with an existing set of distributions, it makes
calculations simpler

Examples: Bernoulli, Binomial, Gamma, Normal, Poisson,
t-distribution
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Bernoulli Random Variable

Definition

Suppose X is a random variable, with X ∈ {0, 1} and P(X = 1) = π.
Then we will say that X is Bernoulli random variable,

p(X = x) = πx(1− π)1−x

for x ∈ {0, 1} and p(X = x) = 0 otherwise.
We will (equivalently) say that

X ∼ Bernoulli(π)
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Bernoulli Random Variable Mean and Variance

Suppose X ∼ Bernoulli(π)

E [X ] = 1× P(X = 1) + 0× P(X = 0)

= π + 0(1− π) = π

var(X ) = E [X 2]− E [X ]2

E [X 2] = 12P(X = 1) + 02P(X = 0)

= π

var(X ) = π − π2

= π(1− π)

E [X ] = π
var(X ) = π(1− π)
Importantly, we can also just look this up!
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Normal/Gaussian Random Variables

Definition

Suppose X is a random variable with X ∈ < and density

f (x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
Then X is a normally distributed random variable with parameters µ and
σ2.
Equivalently, we’ll write

X ∼ Normal(µ, σ2)
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Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

Z ∼ Normal(0, 1)

We’ll call the cumulative distribution function of Z ,

FZ (x) =
1√
2π

∫ x

−∞
exp(−z2/2)dz

Proposition

Scale/Location. If Z ∼ N(0, 1), then X = aZ + b is,

X ∼ Normal(b, a2)
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Intuition
Suppose Z ∼ Normal(0, 1).

Y = 2Z + 6
Y ∼ Normal(6, 4)
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Proof: Z ∼ N(0, 1) and Y = aZ + b, then Y ∼ N(b, a2)

To prove

we need to show that density for Y is a normal distribution.
That is, we’ll show FY (x) is Normal cdf.
Call FZ (x) cdf for standardized normal.

FY (x) = P(Y ≤ x)

= P(aZ + b ≤ x)

= P(Z ≤
[
x − b

a

]
)

=
1√
2π

∫ x−b
a

−∞
exp(−z2

2
)dz

= FZ (
x − b

a
)
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∂FY (x)
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=
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= fZ (
x − b

a
)

1

a
By the chain rule

=
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x−b
a

)2

2

]
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Expectation and Variance

Assume we know:

E [Z ] = 0

Var(Z ) = 1

This implies that, for Y ∼ Normal(µ, σ2)

E [Y ] = E [σZ + µ]

= σE [Z ] + µ

= µ

Var(Y ) = Var(σZ + µ)

= σ2Var(Z ) + Var(µ)

= σ2 + 0

= σ2
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Multivariate Normal

Definition

Suppose X = (X1,X2, . . . ,XN) is a vector of random variables. If X has
pdf

f (x) = (2π)−N/2det (Σ)−1/2 exp

(
−1

2
(x − µ)

′
Σ(x − µ)

)
Then we will say X has a Multivariate Normal Distribution,

X ∼ Multivariate Normal(µ,Σ)
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Multivariate Normal Distribution

Consider the (bivariate) special case where µ = (0, 0) and

Σ =

(
1 0
0 1

)

Then

f (x1, x2) = (2π)−2/21−1/2 exp

(
−1

2

(
(x − 0)

′
(

1 0
0 1

)
(x − 0)

))
=

1

2π
exp

(
−1

2
(x2

1 + x2
2 )

)
=

1√
2π

exp

(
−x2

1

2

)
1√
2π

exp

(
−x2

2

2

)

 product of univariate standard normally distributed random variables
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Properties of the Multivariate Normal Distribution

Suppose X = (X1,X2, . . . ,XN)

E [X ] = µ

cov(X ) = Σ

So that,

Σ =


var(X1) cov(X1,X2) . . . cov(X1,XN)

cov(X2,X1) var(X2) . . . cov(X2,XN)
...

...
. . .

...
cov(XN ,X1) cov(XN ,X2) . . . var(XN)


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One Step Deeper: Exponential Family

Nearly every distribution we will discuss is in the exponential family. An
exponential family distribution has the density of the following form:

fY (y ; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y , φ)

}

Example: Poisson(µ):

Pr(Yi = y | µ) = exp {y logµ− exp( logµ)− log y !}

=⇒ θ = logµ, φ = 1, a(φ) = φ, b(θ) = exp(θ), and c = − log y !

Many other examples, including: Normal, Bernoulli/binomial, Gamma,
multinomial, exponential, negative binomial, beta, uniform, chi-squared,
etc.
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One Step Deeper: Properties of the Exponential Family

Mean is a function of θ and given by

E(Y ) ≡ µ = b′(θ)

Variance is a function of θ and φ and given by

V(Y ) ≡ V = b′′(θ)a(φ)

Common forms of a(φ): 1 (Poisson, Bernoulli), φ (normal, Gamma),
and φ/ωi (binomial)

b′′(θ) is called the variance function

In the Poisson model, θi = logµi , a(φ) = 1 and b(θi ) = exp(θi )

⇒ E(Yi ) = db(θi )
dθi

= exp(θi ) = µi and V(Yi ) = d2b(θi )
dθ2

i
= exp(θi ) = µi
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Summary

Random variables and probability distributions provide useful models
of the world

We can characterize distributions in terms of their expectation
(location) and variance (spread).

Joint and conditional distributions capture the relationship between
random variables.

There is a common set of famous distributions such as the Normal
distribution.
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Next Week

Learning From Random Samples

Point estimation

Interval estimation

Reading
I Aronow and Miller 3.1-3.1.5 (estimation)
I Aronow and Miller 3.2.1 (intervals)
I Fox Chapter 3: Examining Data
I Optional: Imai 7.1 (estimation/inference)
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Fun With Spam
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Fun With: Building a Spam Filter

Suppose we have an email i , (i = 1, . . . ,N) which we represent as a count
of J words

x i = (x1i , x2i , . . . , xJi )

Set of K categories. Category k (k = 1, . . . ,K )

{C1,C2, . . . ,CK}

Subset of labeled documents Y = (Y1,Y2, . . . ,YN) where
Yi ∈ {C1,C2, . . . ,CK}.

Goal: classify every document into one category.

Learn a function that maps from space of (possible) documents to
categories

Use documents with known categories to estimate function

Then apply model to new data, classify those observations
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Example: Building a Spam Filter

Goal: For each document x i , we want to infer most likely category

CMax = arg maxkp(Ck |x i )

We’re going to use Bayes’ rule to estimate p(Ck |x i ).

p(Ck |x i ) =
p(Ck , x i )

p(x i )

=
p(Ck)p(x i |Ck)

p(x i )

(1)
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Example: Building a Spam Filter

CMax = arg maxk
p(Ck)p(x i |Ck)

p(x i )

CMax = arg maxk p(Ck)p(x i |Ck)

Two probabilities to estimate:

p(Ck) = No. Documents in k
No. Documents (from our labeled set)

p(x i |Ck) complicated without heroic assumptions

- Even if xij is binary . Then 2J possible x i documents
- Simplify: assume each word is independent given class

p(x i |Ck) =
∏J

j=1 p(xij |Ck)

This is called a Näıve Bayes classifier.
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This is called a Näıve Bayes classifier.

Stewart (Princeton) Week 2: Random Variables September 19/21, 2016 161 / 164



Example: Building a Spam Filter

CMax = arg maxk
p(Ck)p(x i |Ck)

p(x i )

CMax = arg maxk p(Ck)p(x i |Ck)

Two probabilities to estimate:

p(Ck) = No. Documents in k
No. Documents (from our labeled set)

p(x i |Ck) complicated without heroic assumptions

- Even if xij is binary . Then 2J possible x i documents
- Simplify: assume each word is independent given class

p(x i |Ck) =
∏J

j=1 p(xij |Ck)
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Estimating the Näıve Bayes Classifier

Two components to estimate:

- p(Ck) = No. Documents in k
No. Documents

- p(x i |Ck) =
∏J

j=1 p(xij |Ck)

p(xim = z |Ck) =
No( Docsij = z and C = Ck )

No(C= Ck )

Algorithm steps:

1) Learn p̂(C ) and p̂(x i |Ck) on labeled data

2) Use this to identify most likely Ck for each document i in unlabeled
data

Simple intuition about Näıve Bayes:

Learn what documents in class j look like

Find class k that document i is most similar to
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Estimating the Näıve Bayes Classifier

Two components to estimate:

- p(Ck) = No. Documents in k
No. Documents

- p(x i |Ck) =
∏J

j=1 p(xij |Ck)

p(xim = z |Ck) =
No( Docsij = z and C = Ck )

No(C= Ck )

Algorithm steps:

1) Learn p̂(C ) and p̂(x i |Ck) on labeled data

2) Use this to identify most likely Ck for each document i in unlabeled
data

Simple intuition about Näıve Bayes:
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Example: Building a Spam Filter

Scoring the algorithm is easy.

p(Ck |x i ) ∝ p(Ck)
J∏

j=1

p(xi ,j |Ck)xij

which is simply the probability of the class multiplied by the product of the
probabilities for the words that are observed in the test document.
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Example: Building a Spam Filter

Learn the most probable class using Bayes Rule and a powerful but
“näıve” independence assumption

Despite that the model is “wrong” it classifies spam quite well

Shares the basic structure of many models, is a building block for
more complex models

This was a complicated example, it is okay if you didn’t follow all of it.

Questions?
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