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Where We’ve Been and Where We’re Going...

Last Week
I mechanics of OLS with one variable
I properties of OLS

This Week
I Monday:

F adding a second variable
F new mechanics

I Wednesday:
F omitted variable bias
F multicollinearity
F interactions

Next Week
I multiple regression

Long Run
I probability → inference → regression

Questions?
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1 Two Examples

2 Adding a Binary Variable

3 Adding a Continuous Covariate

4 Once More With Feeling

5 OLS Mechanics and Partialing Out

6 Fun With Red and Blue

7 Omitted Variables

8 Multicollinearity

9 Dummy Variables

10 Interaction Terms

11 Polynomials

12 Conclusion

13 Fun With Interactions
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Why Do We Want More Than One Predictor?

Summarize more information for descriptive inference

Improve the fit and predictive power of our model

Control for confounding factors for causal inference

Model non-linearities (e.g. Y = β0 + β1X + β2X
2)

Model interactive effects (e.g. Y = β0 + β1X + β2X2 + β3X1X2)
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Example 1: Cigarette Smokers and Pipe Smokers
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Example 1: Cigarette Smokers and Pipe Smokers
Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

Y : Deaths per 1,000 Person-Years.

X1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

̂Death Rate = 17− 4 Cigarette Smoker

What do we conclude?

The average death rate is 17 deaths per 1, 000 person-years for pipe smokers
and 13 (17 - 4) for cigarette smokers.

So cigarette smoking lowers the death rate by 4 deaths per 1,000 person
years.

When we “control” for age (in years) we find:

̂Death Rate = 14 + 4 Cigarette Smoker + 10 Age

Why did the sign switch? Which estimate is more useful?
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Example 2: Berkeley Graduate Admissions
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Berkeley gender bias?

Graduate admissions data from Berkeley, 1973

Acceptance rates:

I Men: 8442 applicants, 44% admission rate
I Women: 4321 applicants, 35% admission rate

Evidence of discrimination toward women in admissions?

This is a marginal relationship

What about the conditional relationship within departments?
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Berkeley gender bias?

Within departments:

Men Women

Dept Applied Admitted Applied Admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

Within departments, women do somewhat better than men!

How? Women apply to more challenging departments.

Marginal relationships (admissions and gender) 6= conditional
relationship given third variable (department)
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Simpson’s paradox

0 1 2 3 4

-3
-2

-1
0

1

X

Y

Z = 0

Z = 1

Overall a positive relationship between Yi and Xi here

But within strata defined by Zi , the opposite
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Simpson’s paradox

Simpson’s paradox arises in many contexts- particularly where there is
selection on ability

It is a particular problem in medical or demographic contexts, e.g.
kidney stones, low-birth weight paradox.

Cochran’s 1968 study is also a case of Simpson’s paradox, he originally
sought to compare cigarette to cigar smoking, he found that cigar
smokers had higher mortality rates than cigarette smokers, but at any
age level, cigarette smokers had higher mortality than cigar smokers.

Instance of a more general problem called the ecological inference fallacy
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Basic idea

Old goal: estimate the mean of Y as a function of some independent
variable, X :

E[Yi |Xi ]

For continuous X ’s, we modeled the CEF/regression function with a
line:

Yi = β0 + β1Xi + ui

New goal: estimate the relationship of two variables, Yi and Xi ,
conditional on a third variable, Zi :

Yi = β0 + β1Xi + β2Zi + ui

β’s are the population parameters we want to estimate
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Why control for another variable

Descriptive

I get a sense for the relationships in the data.
I describe more precisely our quantity of interest

Predictive

I We can usually make better predictions about the dependent variable
with more information on independent variables.

Causal

I Block potential confounding, which is when X doesn’t cause Y , but
only appears to because a third variable Z causally affects both of
them.

I Xi : ice cream sales on day i
I Yi : drowning deaths on day i
I Zi : ??
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1 Two Examples

2 Adding a Binary Variable

3 Adding a Continuous Covariate

4 Once More With Feeling

5 OLS Mechanics and Partialing Out

6 Fun With Red and Blue

7 Omitted Variables

8 Multicollinearity

9 Dummy Variables

10 Interaction Terms

11 Polynomials

12 Conclusion

13 Fun With Interactions

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 14 / 132



Regression with Two Explanatory Variables
Example: data from Fish (2002) “Islam and Authoritarianism.” World
Politics. 55: 4-37. Data from 157 countries.

Variables of interest:
I Y : Level of democracy, measured as the 10-year average of Freedom

House ratings

I X1: Country income, measured as log(GDP per capita in $1000s)

I X2: Ethnic heterogeneity (continuous) or British colonial heritage
(binary)

With one predictor we ask: Does income (X1) predict or explain the
level of democracy (Y )?

With two predictors we ask questions like: Does income (X1) predict
or explain the level of democracy (Y ), once we “control” for ethnic
heterogeneity or British colonial heritage (X2)?

The rest of this lecture is designed to explain what is meant by
“controlling for another variable” with linear regression.

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 15 / 132



Simple Regression of Democracy on Income

Let’s look at the bivariate regression
of Democracy on Income:

ŷi = β̂0 + β̂1x1

D̂emo = −1.26 + 1.6 Log(GDP)

Additive Linear Regression
Linear Regression with Interaction terms

Regression with one continuous and one dummy variable
Additive regression with two continuous variables
Inference for Slopes

Simple Regression of Democracy on Income

We have looked at the
regression of Democracy on
Income several times in the
course:

ŷi = β̂0 + xi β̂1
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Gov2000: Quantitative Methodology for Political Science I

Interpretation: A one percent increase in GDP is associated with a .016
point increase in democracy.
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Simple Regression of Democracy on Income

But we can use more information in
our prediction equation.

For example, some countries were

originally British colonies and others

were not:

I Former British colonies tend to
have higher levels of democracy

I Non-colony countries tend to

have lower levels of democracy

Additive Linear Regression
Linear Regression with Interaction terms

Regression with one continuous and one dummy variable
Additive regression with two continuous variables
Inference for Slopes

Adding covariates

We may want to use more
information in our prediction
equation.
For example, some countries
were originally British colonies
and others were not.

Former British colonies
tend to be higher
Other countries tend to be
lower
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Adding a Covariate

How do we do this? We can generalize the prediction equation:

ŷi = β̂0 + β̂1x1i + β̂2x2i

This implies that we want to predict y using the information we have about x1
and x2, and we are assuming a linear functional form.

Notice that now we write Xji where:

j = 1, ..., k is the index for the explanatory variables

i = 1, ..., n is the index for the observation

we often omit i to avoid clutter

In words:
̂Democracy = β̂0 + β̂1 Log(GDP) + β̂2 Colony
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Interpreting a Binary Covariate

Assume X2i indicates whether country i used to be a British colony.

When X2 = 0, the model becomes:

ŷ = β̂0 + β̂1x1 + β̂2 0

= β̂0 + β̂1x1

When X2 = 1, the model becomes:

ŷ = β̂0 + β̂1x1 + β̂2 1

= (β̂0 + β̂2) + β̂1x1

What does this mean? We are fitting two lines with the same slope but
different intercepts.
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Regression of Democracy on Income
From R, we obtain estimates
β̂0, β̂1, β̂2:

Coefficients:

Estimate

(Intercept) -1.5060

GDP90LGN 1.7059

BRITCOL 0.5881

Non-British colonies:

ŷ = β̂0 + β̂1x1

ŷ = −1.5 + 1.7 x1

Former British colonies:

ŷ = (β̂0 + β̂2) + β̂1x1

ŷ = −.92 + 1.7 x1

Additive Linear Regression
Linear Regression with Interaction terms

Regression with one continuous and one dummy variable
Additive regression with two continuous variables
Inference for Slopes

What does this mean?

Using R, we obtain estimates
for β̂0, β̂1, and β̂2

lm(Democracy ~ Income + BritishColony)

Coefficients:
(Intercept) Income BritishColony

-1.527 1.711 0.592

Non-British colonies:

ŷi = −1.527 + 1.711xi

British colonies:

ŷi = −0.935 + 1.711xi
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Regression of Democracy on Income

Our prediction equation is:
ŷ = −1.5 + 1.7 x1 + .58 x2

Where do these quantities appear on
the graph?

β̂0 = −1.5 is the intercept for the
prediction line for non-British colonies.

β̂1 = 1.7 is the slope for both lines.

β̂2 = .58 is the vertical distance
between the two lines for Ex-British
colonies and non-colonies respectively

Additive Linear Regression
Linear Regression with Interaction terms

Regression with one continuous and one dummy variable
Additive regression with two continuous variables
Inference for Slopes

What does this mean?
Our prediction equation is

ŷi = −1.527+1.711xi +0.592zi

Where do these quantities
appear on the graph?

β̂0 = −1.527 is the
intercept for the prediction
line for non-British
colonies.
β̂1 = 1.711 is the slope for
both lines.
β̂2 = 0.592 is the vertical
distance between the two
lines.
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1 Two Examples

2 Adding a Binary Variable

3 Adding a Continuous Covariate

4 Once More With Feeling

5 OLS Mechanics and Partialing Out

6 Fun With Red and Blue

7 Omitted Variables

8 Multicollinearity

9 Dummy Variables

10 Interaction Terms

11 Polynomials

12 Conclusion

13 Fun With Interactions
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Fitting a regression plane

We have considered an example of
multiple regression with one
continuous explanatory variable and
one binary explanatory variable.

This is easy to represent graphically in
two dimensions because we can use
colors to distinguish the two groups in
the data.

Additive Linear Regression
Linear Regression with Interaction terms

Regression with one continuous and one dummy variable
Additive regression with two continuous variables
Inference for Slopes

Fitting a regression plane

We have considered an
example of multiple regression
with one continuous
explanatory variable and one
binary explanatory variable.

This is easy to represent
graphically in two dimensions
because we can use colors to
distinguish the two groups in
the data.
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Regression of Democracy on Income

These observations are actually
located in a three-dimensional
space.

We can try to represent this
using a 3D scatterplot.

In this view, we are looking at
the data from the Income side;
the two regression lines are
drawn in the appropriate
locations.
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Regression of Democracy on Income

We can also look at the 3D
scatterplot from the British
colony side.

While the British colonial
status variable is either 0 or 1,
there is nothing in the
prediction equation that
requires this to be the case.

In fact, the prediction equation
defines a regression plane that
connects the lines when x2 = 0
and x2 = 1.
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Regression with two continuous variables

Since we fit a regression plane to the data whenever we have two
explanatory variables, it is easy to move to a case with two
continuous explanatory variables.

For example, we might want to use:

I X1 Income and X2 Ethnic Heterogeneity
I Y Democracy

̂Democracy = β̂0 + β̂1Income + β̂2Ethnic Heterogeneity
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Regression of Democracy on Income

We can plot the points in a 3D
scatterplot.

R returns:

I β̂0 = −.71
I β̂1 = 1.6 for Income
I β̂2 = −.6 for Ethnic

Heterogeneity

How does this look
graphically?

These estimates define a
regression plane through the
data.

Additive Linear Regression
Linear Regression with Interaction terms

Regression with one continuous and one dummy variable
Additive regression with two continuous variables
Inference for Slopes

Fitting a regression plane

We can plot the points in a 3D
scatterplot.

R returns the following
estimates:

β̂0 = −0.717
β̂1 = 1.573
β̂2 = −0.550

These estimates define a
regression plane through the
data.
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Interpreting a Continuous Covariate

The coefficient estimates have a similar interpretation in this case as
they did in the Income-British Colony example.

For example, β̂1 = 1.6 represents our prediction of the difference in
Democracy between two observations that differ by one unit of
Income but have the same value of Ethnic Heterogeneity.

The slope estimates have partial effect or ceteris paribus
interpretations:

∂(y = β0 + β1X1 + β2X2)

∂X1
= β1
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Interpreting a Continuous Covariate

Again, we can think of this as
defining a regression line for
the relationship between
Democracy and Income at
every level of Ethnic
Heterogeneity.

All of these lines are parallel
since they have the slope
β̂1 = 1.6

The lines shift up or down
based on the value of Ethnic
Heterogeneity.

Additive Linear Regression
Linear Regression with Interaction terms

Regression with one continuous and one dummy variable
Additive regression with two continuous variables
Inference for Slopes

What does this mean?

Again, we can think of this as
defining a regression line for
the relationship between
Democracy and Income at
every level of Ethnic
Heterogeneity.

All of these lines are parallel
since they have the slope β̂1.

The lines shift up or down
based on the value of Ethnic
Heterogeneity.
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More Complex Predictions

We can also use the coefficient estimates for more complex
predictions that involve changing multiple variables simultaneously.

Consider our results for the regression of democracy on X1 income
and X2 ethnic heterogeneity:

I β̂0 = −.71
I β̂1 = 1.6
I β̂2 = −.6

What is the predicted difference in democracy between
I Chile with X1 = 3.5 and X2 = .06
I China with X1 = 2.5 and X2 = .5?

Predicted democracy is
I −.71 + 1.6 · 3.5− .6 · .06 = 4.8 for Chile
I −.71 + 1.6 · 2.5− .6 · 0.5 = 3 for China.

Predicted difference is thus: 1.8 or (3.5− 2.5)β̂1 + (.06− .5)β̂2
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AJR Example
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Basics

Ye olde model:
Ŷi = β̂0 + β̂1Xi

Zi = 1 to indicate that i is an African country

Zi = 0 to indicate that i is an non-African country

Concern: AJR might be picking up an “African effect”:

I African countries have low incomes and weak property rights
I “Control for” country being in Africa or not to remove this
I Effects are now within Africa or within non-Africa, not between

New model:
Ŷi = β̂0 + β̂1Xi + β̂2Zi
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AJR model

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.65556 0.31344 18.043 < 2e-16 ***

## avexpr 0.42416 0.03971 10.681 < 2e-16 ***

## africa -0.87844 0.14707 -5.973 3.03e-08 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.6253 on 108 degrees of freedom

## (52 observations deleted due to missingness)

## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7024

## F-statistic: 130.8 on 2 and 108 DF, p-value: < 2.2e-16
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Two lines in one regression

How can we interpret this model?

Plug in two possible values for Zi and rearrange

When Zi = 0:
Ŷi = β̂0 + β̂1Xi + β̂2Zi

= β̂0 + β̂1Xi + β̂2 × 0

= β̂0 + β̂1Xi

When Zi = 1:
Ŷi = β̂0 + β̂1Xi + β̂2Zi

= β̂0 + β̂1Xi + β̂2 × 1

= (β̂0 + β̂2) + β̂1Xi

Two different intercepts, same slope
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Example interpretation of the coefficients

Let’s review what we’ve seen so far:

Intercept for Xi Slope for Xi

Non-African country (Zi = 0) β̂0 β̂1
African country (Zi = 1) β̂0 + β̂2 β̂1

In this example, we have:

Ŷi = 5.656 + 0.424× Xi − 0.878× Zi

We can read these as:

I β̂0: average log income for non-African country (Zi = 0) with property
rights measured at 0 is 5.656

I β̂1: A one-unit increase in property rights is associated with a 0.424
increase in average log incomes for two African countries (or for two
non-African countries)

I β̂2: there is a -0.878 average difference in log income per capita
between African and non-African counties conditional on property
rights
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General interpretation of the coefficients

Ŷi = β̂0 + β̂1Xi + β̂2Zi

β̂0: average value of Yi when both Xi and Zi are equal to 0

β̂1: A one-unit change in Xi is associated with a β̂1-unit change in Yi

conditional on Zi

β̂2: average difference in Yi between Zi = 1 group and Zi = 0 group
conditional on Xi
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Adding a binary variable, visually
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Adding a continuous variable

Ye olde model:
Ŷi = β̂0 + β̂1Xi

Zi : mean temperature in country i (continuous)

Concern: geography is confounding the effect

I geography might affect political institutions
I geography might affect average incomes (through diseases like malaria)

New model:
Ŷi = β̂0 + β̂1Xi + β̂2Zi
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AJR model, revisited

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.80627 0.75184 9.053 1.27e-12 ***

## avexpr 0.40568 0.06397 6.342 3.94e-08 ***

## meantemp -0.06025 0.01940 -3.105 0.00296 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.6435 on 57 degrees of freedom

## (103 observations deleted due to missingness)

## Multiple R-squared: 0.6155, Adjusted R-squared: 0.602

## F-statistic: 45.62 on 2 and 57 DF, p-value: 1.481e-12
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Interpretation with a continuous Z

Intercept for Xi Slope for Xi

Zi = 0 ◦C β̂0 β̂1
Zi = 21 ◦C β̂0 + β̂2 × 21 β̂1
Zi = 24 ◦C β̂0 + β̂2 × 24 β̂1
Zi = 26 ◦C β̂0 + β̂2 × 26 β̂1

In this example we have:

Ŷi = 6.806 + 0.406× Xi +−0.06× Zi

β̂0: average log income for a country with property rights measured
at 0 and a mean temperature of 0 is 6.806

β̂1: A one-unit change in property rights is associated with a 0.406
change in average log incomes conditional on a country’s mean
temperature

β̂2: A one-degree increase in mean temperature is associated with a
-0.06 change in average log incomes conditional on strength of
property rights
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General interpretation

Ŷi = β̂0 + β̂1Xi + β̂2Zi

The coefficient β̂1 measures how the predicted outcome varies in Xi

for a fixed value of Zi .

The coefficient β̂2 measures how the predicted outcome varies in Zi

for a fixed value of Xi .
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Fitted values and residuals

Where do we get our hats? β̂0, β̂1, β̂2
To answer this, we first need to redefine some terms from simple
linear regression.

Fitted values for i = 1, . . . , n:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

Residuals for i = 1, . . . , n:

ûi = Yi − Ŷi
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Least squares is still least squares

How do we estimate β̂0, β̂1, and β̂2?

Minimize the sum of the squared residuals, just like before:

(β̂0, β̂1, β̂2) = arg min
b0,b1,b2

n∑
i=1

(Yi − b0 − b1Xi − b2Zi )
2

The calculus is the same as last week, with 3 partial derivatives
instead of 2

Let’s start with a simple recipe and then rigorously show that it holds
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OLS estimator recipe using two steps

“Partialling out” OLS recipe:

1 Run regression of Xi on Zi :

X̂i = δ̂0 + δ̂1Zi

2 Calculate residuals from this regression:

r̂xz,i = Xi − X̂i

3 Run a simple regression of Yi on residuals, r̂xz,i :

Ŷi = β̂0 + β̂1r̂xz,i

Estimate of β̂1 will be the same as running:

Ŷi = β̂0 + β̂1Xi + β̂2Zi
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Regression property rights on mean temperature

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.95678 0.82015 12.140 < 2e-16 ***

## meantemp -0.14900 0.03469 -4.295 6.73e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.321 on 58 degrees of freedom

## (103 observations deleted due to missingness)

## Multiple R-squared: 0.2413, Adjusted R-squared: 0.2282

## F-statistic: 18.45 on 1 and 58 DF, p-value: 6.733e-05
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Regression of log income on the residuals

## (Intercept) avexpr.res

## 8.0542783 0.4056757

## (Intercept) avexpr meantemp

## 6.80627375 0.40567575 -0.06024937
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Residual/partial regression plot

Useful for plotting the conditional relationship between property rights and
income given temperature:
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Deriving the Linear Least Squares Estimator

In simple regression, we chose (β̂0, β̂1) to minimize the sum of the
squared residuals

We use the same principle for picking (β̂0, β̂1, β̂2) for regression with
two regressors (xi and zi ):

(β̂0, β̂1, β̂2) = argmin
β̃0,β̃1,β̃2

n∑
i=1

û2i = argmin
β̃0,β̃1,β̃2

n∑
i=1

(yi − ŷi )
2

= argmin
β̃0,β̃1,β̃2

n∑
i=1

(yi − β̃0 − xi β̃1 − zi β̃2)2

(The same works more generally for k regressors, but this is done
more easily with matrices as we will see next week)
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Deriving the Linear Least Squares Estimator

We want to minimize the following quantitity with respect to (β̃0, β̃1, β̃2):

S(β̃0, β̃1, β̃2) =
n∑

i=1

(yi − β̃0 − β̃1xi − β̃2zi )2

Plan is conceptually the same as before

1 Take the partial derivatives of S with respect to β̃0, β̃1 and β̃2.

2 Set each of the partial derivatives to 0 to obtain the first order
conditions.

3 Substitute β̂0, β̂1, β̂2 for β̃0, β̃1, β̃2 and solve for β̂0, β̂1, β̂2 to obtain
the OLS estimator.
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First Order Conditions
Setting the partial derivatives equal to zero leads to a system of 3 linear equations
in 3 unknowns: β̂0, β̂1 and β̂2

∂S

∂β̃0
=

n∑
i=1

(yi − β̂0 − β̂1xi − β̂2zi ) = 0

∂S

∂β̃1
=

n∑
i=1

xi (yi − β̂0 − β̂1xi − β̂2zi ) = 0

∂S

∂β̃2
=

n∑
i=1

zi (yi − β̂0 − β̂1xi − β̂2zi ) = 0

When will this linear system have a unique solution?

More observations than predictors (i.e. n > 2)

x and z are linearly independent, i.e.,

I neither x nor z is a constant
I x is not a linear function of z (or vice versa)

Wooldridge calls this assumption no perfect collinearity
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The OLS Estimator

The OLS estimator for (β̂0, β̂1, β̂2) can be written as

β̂0 = ȳ − β̂1x̄ − β̂2z̄

β̂1 =
Cov(x , y)Var(z)− Cov(z , y)Cov(x , z)

Var(x)Var(z)− Cov(x , z)2

β̂2 =
Cov(z , y)Var(x)− Cov(x , y)Cov(z , x)

Var(x)Var(z)− Cov(x , z)2

For (β̂0, β̂1, β̂2) to be well-defined we need:

Var(x)Var(z) 6= Cov(x , z)2

Condition fails if:

1 If x or z is a constant (⇒ Var(x)Var(z) = Cov(x , z) = 0)

2 One explanatory variable is an exact linear function of another
(⇒ Cor(x , z) = 1 ⇒ Var(x)Var(z) = Cov(x , z)2)

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 53 / 132



“Partialling Out” Interpretation of the OLS Estimator

Assume Y = β0 + β1X + β2Z + u. Another way to write the OLS estimator is:

β̂1 =

∑n
i r̂xz,i yi∑n
i r̂

2
xz,i

where r̂xz,i are the residuals from the regression of X on Z :

X = λ+ δZ + rxz

In other words, both of these regressions yield identical estimates β̂1:

y = γ̂0 + β̂1r̂xz and y = β̂0 + β̂1x + β̂2z

δ is correlation between X and Z . What is our estimator β̂1 if δ = 0?

rxz = x − λ̂ = xi − x̄ so β̂1 =

∑n
i r̂xz,i yi∑n
i r̂

2
xz,i

=

∑n
i (xi − x̄) yi∑n
i (xi − x̄)2

That is, same as the simple regresson of Y on X alone.
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Origin of the Partial Out Recipe

Assume Y = β0 + β1X + β2Z + u. Another way to write the OLS estimator is:

β̂1 =

∑n
i r̂xz,i yi∑n
i r̂

2
xz,i

where r̂xz,i are the residuals from the regression of X on Z :

X = λ+ δZ + rxz

In other words, both of these regressions yield identical estimates β̂1:

y = γ̂0 + β̂1r̂xz and y = β̂0 + β̂1x + β̂2z

δ measures the correlation between X and Z .

Residuals r̂xz are the part of X that is uncorrelated with Z . Put differently,
r̂xz is X , after the effect of Z on X has been partialled out or netted out.

Can use same equation with k explanatory variables; r̂xz will then come from
a regression of X on all the other explanatory variables.
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OLS assumptions for unbiasedness

When we have more than one independent variable, we need the
following assumptions in order for OLS to be unbiased:

1 Linearity
Yi = β0 + β1Xi + β2Zi + ui

2 Random/iid sample
3 No perfect collinearity
4 Zero conditional mean error

E[ui |Xi ,Zi ] = 0
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New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no
exactly linear relationships among the explanatory variables.

Two components

1 Both Xi and Zi have to vary.
2 Zi cannot be a deterministic, linear function of Xi .

Part 2 rules out anything of the form:

Zi = a + bXi

Notice how this is linear (equation of a line) and there is no error, so
it is deterministic.

What’s the correlation between Zi and Xi? 1!
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Perfect collinearity example (I)

Simple example:

I Xi = 1 if a country is not in Africa and 0 otherwise.
I Zi = 1 if a country is in Africa and 0 otherwise.

But, clearly we have the following:

Zi = 1− Xi

These two variables are perfectly collinear.

What about the following:

I Xi = income
I Zi = X 2

i

Do we have to worry about collinearity here?

No! Because while Zi is a deterministic function of Xi , it is not a
linear function of Xi .
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R and perfect collinearity

R, and all other packages, will drop one of the variables if there is
perfect collinearity:

##

## Coefficients: (1 not defined because of singularities)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.71638 0.08991 96.941 < 2e-16 ***

## africa -1.36119 0.16306 -8.348 4.87e-14 ***

## nonafrica NA NA NA NA

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9125 on 146 degrees of freedom

## (15 observations deleted due to missingness)

## Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184

## F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14
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Perfect collinearity example (II)

Another example:

I Xi = mean temperature in Celsius
I Zi = 1.8Xi + 32 (mean temperature in Fahrenheit)

## (Intercept) meantemp meantemp.f

## 10.8454999 -0.1206948 NA
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OLS assumptions for large-sample inference

For large-sample inference and calculating SEs, we need the two-variable
version of the Gauss-Markov assumptions:

1 Linearity
Yi = β0 + β1Xi + β2Zi + ui

2 Random/iid sample

3 No perfect collinearity

4 Zero conditional mean error

E[ui |Xi ,Zi ] = 0

5 Homoskedasticity
var[ui |Xi ,Zi ] = σ2u
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Inference with two independent variables in large samples

We have our OLS estimate β̂1
We have an estimate of the standard error for that coefficient, ŜE [β̂1].

Under assumption 1-5, in large samples, we’ll have the following:

β̂1 − β1
ŜE [β̂1]

∼ N(0, 1)

The same holds for the other coefficient:

β̂2 − β2
ŜE [β̂2]

∼ N(0, 1)

Inference is exactly the same in large samples!

Hypothesis tests and CIs are good to go

The SE’s will change, though
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OLS assumptions for small-sample inference
For small-sample inference, we need the Gauss-Markov plus Normal errors:

1 Linearity
Yi = β0 + β1Xi + β2Zi + ui

2 Random/iid sample

3 No perfect collinearity

4 Zero conditional mean error

E[ui |Xi ,Zi ] = 0

5 Homoskedasticity
var[ui |Xi ,Zi ] = σ2u

6 Normal conditional errors

ui ∼ N(0, σ2u)
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Inference with two independent variables in small samples

Under assumptions 1-6, we have the following small change to our
small-n sampling distribution:

β̂1 − β1
ŜE [β̂1]

∼ tn−3

The same is true for the other coefficient:

β̂2 − β2
ŜE [β̂2]

∼ tn−3

Why n − 3?

I We’ve estimated another parameter, so we need to take off another
degree of freedom.

 small adjustments to the critical values and the t-values for our
hypothesis tests and confidence intervals.
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Red State Blue State
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Red and Blue States
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Rich States are More Democratic

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 68 / 132



But Rich People are More Republican
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Paradox Resolved
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If Only Rich People Voted, it Would Be a Landslide
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A Possible Explanation
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Where We’ve Been and Where We’re Going...

Last Week
I mechanics of OLS with one variable
I properties of OLS

This Week
I Monday:

F adding a second variable
F new mechanics

I Wednesday:
F omitted variable bias
F multicollinearity
F interactions

Next Week
I multiple regression

Long Run
I probability → inference → regression

Questions?
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Unbiasedness revisited

True model:
Yi = β0 + β1Xi + β2Zi + ui

Assumptions 1-4 ⇒ we get unbiased estimates of the coefficients

What happens if we ignore the Zi and just run the simple linear
regression with just Xi?

Misspecified model:

Yi = β0 + β1Xi + u∗i u∗i = β2Zi + ui

OLS estimates from the misspecified model:

Ŷi = β̃0 + β̃1Xi
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = β0 + β1Watch Fox News + β2Strong Republican + u

Underspecified Model that we use:

Voted Republican = β̃0 + β̃1Watch Fox News

Q: Which statement is correct?

1 β1 > β̃1
2 β1 < β̃1
3 β1 = β̃1
4 Can’t tell

Answer: β̃1 is upward biased since being a strong republican is positively
correlated with both watching fox news and voting republican. We have
β1 < β̃1.
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Omitted Variable Bias: Simple Case

True Population Model:

Survival = β0 + β1Hospitalized + β2Health + u

Under-specified Model that we use:

Survival = β̃0 + β̃1Hospitalized

Q: Which statement is correct?

1 β1 > β̃1
2 β1 < β̃1
3 β1 = β̃1
4 Can’t tell

Answer: The negative coefficient β̃1 is downward biased compared to the
true β1 so β1 > β̃1. Being hospitalized is negatively correlated with health,
and health is positively correlated with survival.
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Omitted Variable Bias: Simple Case
True Population Model:

Y = β0 + β1X1 + β2X2 + u

Underspecified Model that we use:

ỹ = β̃0 + β̃1x1

We can show that the relationship between β̃1 and β̂1 is:

β̃1 = β̂1 + β̂2 · δ̃

where:

δ̃ is the slope of a regression of x2 on x1. If δ̃ > 0 then cor(x1, x2) > 0 and if
δ̃ < 0 then cor(x1, x2) < 0.

β̂2 is from the true regression and measures the relationship between x2 and
y , conditional on x1.

Q. When will β̃1 = β̂1?
A. If δ̃ = 0 or β̂2 = 0.
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Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

β̃1 = β̂1 + β̂2 · δ̃
E [β̃1 | X ] = E [β̂1 + β̂2 · δ̃ | X ]

= E [β̂1 | X ] + E [β̂2 | X ] · δ̃ (δ̃ nonrandom given x)

= β1 + β2 · δ̃ (given assumptions 1-4)

So

Bias[β̃1 | X ] = E [β̃1 | X ]− β1 = β2 · δ̃

So the bias depends on the relationship between x2 and x1, our δ̃, and the
relationship between x2 and y , our β2.

Any variable that is correlated with an included X and the outcome Y is
called a confounder.
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Omitted Variable Bias: Simple Case

Direction of the bias of β̃1 compared to β1 is given by:

cov(X1,X2) > 0 cov(X1,X2) < 0 cov(X1,X2) = 0

β2 > 0 Positive bias Negative Bias No bias
β2 < 0 Negative bias Positive Bias No bias
β2 = 0 No bias No bias No bias

Further points:

Magnitude of the bias matters too

If you miss an important confounder, your estimates are biased and
inconsistent.

In the more general case with more than two covariates the bias is
more difficult to discern. It depends on all the pairwise correlations.
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Including an Irrelevant Variable: Simple Case

True Population Model:

y = β0 + β1x1 + β2x2 + u where β2 = 0

and Assumptions I–IV hold.

Overspecified Model that we use:

ỹ = β̃0 + β̃1x1 + β̃2x2

Q: Which statement is correct?

1 β1 > β̃1
2 β1 < β̃1
3 β1 = β̃1
4 Can’t tell
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Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions I–IV, we have:

E [β̂j ] = βj

for all values of βj . So, if β2 = 0, we get

E [β̂0] = β0, E [β̂1] = β1, E [β̂2] = 0

and thus including the irrelevant variable does not generally affect the
unbiasedness. The sampling distribution of β̂2 will be centered about zero.
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Sampling variance for simple linear regression

Under simple linear regression, we found that the distribution of the
slope was the following:

var(β̂1) =
σ2u∑n

i=1(Xi − X )2

Factors affecting the standard errors (the square root of these
sampling variances):

I The error variance σ2
u (higher conditional variance of Yi leads to bigger

SEs)
I The total variation in Xi :

∑n
i=1(Xi − X )2 (lower variation in Xi leads

to bigger SEs)

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 86 / 132



Sampling variation for linear regression with two covariates

Regression with an additional independent variable:

var(β̂1) =
σ2u

(1− R2
1 )
∑n

i=1(Xi − X )2

Here, R2
1 is the R2 from the regression of Xi on Zi :

X̂i = δ̂0 + δ̂1Zi

Factors now affecting the standard errors:

I The error variance (higher conditional variance of Yi leads to bigger
SEs)

I The total variation of Xi (lower variation in Xi leads to bigger SEs)
I The strength of the relationship between Xi and Zi (stronger

relationships mean higher R2
1 and thus bigger SEs)

What happens with perfect collinearity? R2
1 = 1 and the variances are

infinite.
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Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between
two independent variables in a regression.

With multicollinearity, we’ll have R2
1 ≈ 1, but not exactly.

The stronger the relationship between Xi and Zi , the closer the R2
1

will be to 1, and the higher the SEs will be:

var(β̂1) =
σ2u

(1− R2
1 )
∑n

i=1(Xi − X )2

Given the symmetry, it will also increase var(β̂2) as well.
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Intuition for multicollinearity

Remember the OLS recipe:

I β̂1 from regression of Yi on r̂xz,i
I r̂xz,i are the residuals from the regression of Xi on Zi

Estimated coefficient:

β̂1 =

∑n
i=1 r̂xz,iYi∑n
i=1 r̂

2
xz,i

When Zi and Xi have a strong relationship, then the residuals will
have low variation

We explain away a lot of the variation in Xi through Zi .

Low variation in an independent variable (here, r̂xz,i )  high SEs

Basically, there is less residual variation left in Xi after “partialling
out” the effect of Zi
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Effects of multicollinearity

No effect on the bias of OLS.

Only increases the standard errors.

Really just a sample size problem:

I If Xi and Zi are extremely highly correlated, you’re going to need a
much bigger sample to accurately differentiate between their effects.
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How Do We Detect Multicollinearity?

The best practice is to directly compute Cor(X1,X2) before running your
regression.

But you might (and probably will) forget to do so. Even then, you can
detect multicollinearity from your regression result:

I Large changes in the estimated regression coefficients when a predictor
variable is added or deleted

I Lack of statistical significance despite high R2

I Estimated regression coefficients have an opposite sign from predicted

A more formal indicator is the variance inflation factor (VIF):

VIF (βj) =
1

1− R2
j

which measures how much V [β̂j | X ] is inflated compared to a
(hypothetical) uncorrelated data. (where R2

j is the coefficient of
determination from the partialing out equation)
In R, vif() in the car package.
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So How Should I Think about Multicollinearity?

Multicollinearity does NOT lead to bias; estimates will be unbiased
and consistent.

Multicollinearity should in fact be seen as a problem of
micronumerosity, or “too little data.” You can’t ask the OLS
estimator to distinguish the partial effects of X1 and X2 if they are
essentially the same.

If X1 and X2 are almost the same, why would you want a unique β1
and a unique β2? Think about how you would interpret that?

Relax, you got way more important things to worry about!

If possible, get more data

Drop one of the variables, or combine them

Or maybe linear regression is not the right tool
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Why Dummy Variables?

A dummy variable (a.k.a. indicator variable, binary variable, etc.) is a
variable that is coded 1 or 0 only.

We use dummy variables in regression to represent qualitative information
through categorical variables such as different subgroups of the sample (e.g.
regions, old and young respondents, etc.)

By including dummy variables into our regression function, we can easily
obtain the conditional mean of the outcome variable for each category.

I E.g. does average income vary by region? Are Republicans smarter
than Democrats?

Dummy variables are also used to examine conditional hypothesis via
interaction terms

I E.g. does the effect of education differ by gender?
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How Can I Use a Dummy Variable?

Consider the easiest case with two categories. The type of electoral
system of country i is given by:

Xi ∈ {Proportional ,Majoritarian}

For this we use a single dummy variable which is coded like:

Di =

{
1 if country i has a Majoritarian Electoral System
0 if country i has a Proportional Electoral System

Hint: Informative variable names help (e.g. call it MAJORITARIAN)

Let’s regress GDP on this dummy variable and a constant:
Y = β0 + β1D + u

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 95 / 132



Example: GDP per capita on Electoral System
R Code

> summary(lm(REALGDPCAP ~ MAJORITARIAN, data = D))

Call:

lm(formula = REALGDPCAP ~ MAJORITARIAN, data = D)

Residuals:

Min 1Q Median 3Q Max

-5982 -4592 -2112 4293 13685

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7097.7 763.2 9.30 1.64e-14 ***

MAJORITARIAN -1053.8 1224.9 -0.86 0.392

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5504 on 83 degrees of freedom

Multiple R-squared: 0.008838, Adjusted R-squared: -0.003104

F-statistic: 0.7401 on 1 and 83 DF, p-value: 0.3921
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Example: GDP per capita on Electoral System

R Code
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7097.7 763.2 9.30 1.64e-14 ***

MAJORITARIAN -1053.8 1224.9 -0.86 0.392

R Code
> gdp.pro <- D$REALGDPCAP[D$MAJORITARIAN == 0]

> summary(gdp.pro)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1116 2709 5102 7098 10670 20780

> gdp.maj <- D$REALGDPCAP[D$MAJORITARIAN == 1]

> summary(gdp.maj)

Min. 1st Qu. Median Mean 3rd Qu. Max.

530.2 1431.0 3404.0 6044.0 11770.0 18840.0

So this is just like a difference in means two sample t-test!
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Dummy Variables for Multiple Categories

More generally, let’s say X measures which of m categories each unit
i belongs to. E.g. the type of electoral system or region of country i
is given by:

I Xi ∈ {Proportional ,Majoritarian} so m = 2

I Xi ∈ {Asia,Africa, LatinAmerica,OECD,Transition} so m = 5

To incorporate this information into our regression function we usually
create m − 1 dummy variables, one for each of the m − 1 categories.

Why not all m? Including all m category indicators as dummies would
violate the no perfect collinearity assumption:

Dm = 1− (D1 + · · ·+ Dm−1)

The omitted category is our baseline case (also called a reference
category) against which we compare the conditional means of Y for
the other m − 1 categories.
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Example: Regions of the World

Consider the case of our “polytomous” variable world region with
m = 5:

Xi ∈ {Asia,Africa, LatinAmerica,OECD,Transition}
This five-category classification can be represented in the regression
equation by introducing m − 1 = 4 dummy regressors:

Category D1 D2 D3 D4

Asia 1 0 0 0
Africa 0 1 0 0

LatinAmerica 0 0 1 0
OECD 0 0 0 1

Transition 0 0 0 0

Our regression equation is:

Y = β0 + β1D1 + β2D2 + β3D3 + β4D4 + u
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Why Interaction Terms?

Interaction terms will allow you to let the slope on one variable vary
as a function of another variable

Interaction terms are central in regression analysis to:
I Model and test conditional hypothesis (do the returns to education

vary by gender?)
I Make model of the conditional expectation function more realistic by

letting coefficients vary across subgroups

We can interact:
I two or more dummy variables
I dummy variables and continuous variables
I two or more continuous variables

Interactions often confuses researchers and mistakes in use and
interpretation occur frequently (even in top journals)
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Return to the Fish Example

Data comes from Fish (2002), “Islam and Authoritarianism.”

Basic relationship: does more economic development lead to more
democracy?

We measure economic development with log GDP per capita

We measure democracy with a Freedom House score, 1 (less free) to
7 (more free)
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Let’s see the data
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Fish argues that Muslim countries are less likely to be democratic no
matter their economic development
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Controlling for Religion Additively
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But the regression is a poor fit for Muslim countries

Can we allow for different slopes for each group?
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Interactions with a binary variable

Let Zi be binary

In this case, Zi = 1 for the country being Muslim

We can add another covariate to the baseline model that allows the
effect of income to vary by Muslim status.

This covariate is called an interaction term and it is the product of
the two marginal variables of interest: incomei ×muslimi

Here is the model with the interaction term:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi
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Two lines in one regression

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

How can we interpret this model?

We can plug in the two possible values of Zi

When Zi = 0:
Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

= β̂0 + β̂1Xi + β̂2 × 0 + β̂3Xi × 0

= β̂0 + β̂1Xi

When Zi = 1:
Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

= β̂0 + β̂1Xi + β̂2 × 1 + β̂3Xi × 1

= (β̂0 + β̂2) + (β̂1 + β̂3)Xi
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Example interpretation of the coefficients

Intercept for Xi Slope for Xi

Non-Muslim country (Zi = 0) β̂0 β̂1
Muslim country (Zi = 1) β̂0 + β̂2 β̂1 + β̂3
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General interpretation of the coefficients

β̂0: average value of Yi when both Xi and Zi are equal to 0

β̂1: a one-unit change in Xi is associated with a β̂1-unit change in Yi

when Zi = 0

β̂2: average difference in Yi between Zi = 1 group and Zi = 0 group
when Xi = 0

β̂3: change in the effect of Xi on Yi between Zi = 1 group and Zi = 0
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Lower order terms

Principle of Marginality: Always include the marginal effects
(sometimes called the lower order terms)

Imagine we omitted the lower order term for muslim:
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Omitting lower order terms

Ŷi = β̂0 + β̂1Xi + 0× Zi + β̂3XiZi

Intercept for Xi Slope for Xi

Non-Muslim country (Zi = 0) β̂0 β̂1
Muslim country (Zi = 1) β̂0 + 0 β̂1 + β̂3

Implication: no difference between Muslims and non-Muslims when
income is 0

Distorts slope estimates.

Very rarely justified.

Yet for some reason people keep doing it.
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Interactions with two continuous variables

Now let Zi be continuous

Zi is the percent growth in GDP per capita from 1975 to 1998

Is the effect of economic development for rapidly developing countries
higher or lower than for stagnant economies?

We can still define the interaction:

incomei × growthi

And include it in the regression:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi
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Interpretation

With a continuous Zi , we can have more than two values that it can
take on:

Intercept for Xi Slope for Xi

Zi = 0 β̂0 β̂1
Zi = 0.5 β̂0 + β̂2 × 0.5 β̂1 + β̂3 × 0.5

Zi = 1 β̂0 + β̂2 × 1 β̂1 + β̂3 × 1

Zi = 5 β̂0 + β̂2 × 5 β̂1 + β̂3 × 5
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General interpretation

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

The coefficient β̂1 measures how the predicted outcome varies in Xi

when Zi = 0.

The coefficient β̂2 measures how the predicted outcome varies in Zi

when Xi = 0

The coefficient β̂3 is the change in the effect of Xi given a one-unit
change in Zi :

∂E [Yi |Xi ,Zi ]

∂Xi
= β1 + β3Zi

The coefficient β̂3 is the change in the effect of Zi given a one-unit
change in Xi :

∂E [Yi |Xi ,Zi ]

∂Zi
= β2 + β3Xi

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 115 / 132



Additional Assumptions

Interaction effects are particularly susceptible to model dependence. We
are making two assumptions for the estimated effects to be meaningful:

1 Linearity of the interaction effect

2 Common support (variation in X throughout the range of Z )

We will talk about checking these assumptions in a few weeks.
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Example: Common Support
Chapman 2009 analysis
example and reanalysis from Hainmueller, Mummolo, Xu 2016

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 117 / 132



Example: Common Support
Chapman 2009 analysis
example and reanalysis from Hainmueller, Mummolo, Xu 2016
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Summary for Interactions

Do not omit lower order terms (unless you have a strong theory that tells
you so) because this usually imposes unrealistic restrictions.

Do not interpret the coefficients on the lower terms as marginal effects (they
give the marginal effect only for the case where the other variable is equal to
zero)

Produce tables or figures that summarize the conditional marginal effects of
the variable of interest at plausible different levels of the other variable; use
correct formula to compute variance for these conditional effects (sum of
coefficients)

In simple cases the p-value on the interaction term can be used as a test
against the null of no interaction, but significant tests for the lower order
terms rarely make sense.

Further Reading: Brambor, Clark, and Golder. 2006. Understanding Interaction
Models: Improving Empirical Analyses. Political Analysis 14 (1): 63-82.

Hainmueller, Mummolo, Xu. 2016. How Much Should We Trust Estimates from
Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice.
Working Paper
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1 Two Examples

2 Adding a Binary Variable

3 Adding a Continuous Covariate

4 Once More With Feeling

5 OLS Mechanics and Partialing Out

6 Fun With Red and Blue

7 Omitted Variables

8 Multicollinearity

9 Dummy Variables

10 Interaction Terms

11 Polynomials

12 Conclusion

13 Fun With Interactions
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Polynomial terms

Polynomial terms are a special case of the continuous variable
interactions.

For example, when X1 = X2 in the previous interaction model, we get
a quadratic:

Y = β0 + β1X1 + β2X2 + β3X1 X2 + u

Y = β0 + (β1 + β2)X1 + β3X1 X1 + u

Y = β0 + β̃1X1 + β̃2X
2
1 + u

This is called a second order polynomial in X1

A third order polynomial is given by:
Y = β0 + β1X1 + β2X

2
1 + β3X

3
1 + u
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Polynomial Example: Income and Age

Let’s look at data from the
U.S. and examine the
relationship between Y: income
and X: age

We see that a simple linear
specification does not fit the
data very well:
Y = β0 + β1X1 + u

A second order polynomial in
age fits the data a lot better:
Y = β0 + β1X1 + β2X

2
1 + u

Additive Linear Regression
Linear Regression with Interaction terms

Dummies interacted with continuous variables
Interaction of two continuous variables
Hypothesis testing with interaction terms

Quadratic age effect

If we define xi to be age for
individual i and yi to be income
category,

ŷi = β̂0 + xi β̂1 + x2
i β̂2

This produces a much better fit
to the data. ●
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Polynomial Example: Income and Age

Y = β0 + β1X1 + β2X
2
1 + u

Is β1 the marginal effect of age
on income?

No! The marginal effect of age
depends on the level of age:
∂Y
∂X1

= β̂1 + 2 β̂2 X1

Here the effect of age changes
monotonically from positive to
negative with income.

If β2 > 0 we get a U-shape,
and if β2 < 0 we get an
inverted U-shape.

Maximum/Minimum occurs at
| β1
2β2
|. Here turning point is at

X1 = 50.

Additive Linear Regression
Linear Regression with Interaction terms

Dummies interacted with continuous variables
Interaction of two continuous variables
Hypothesis testing with interaction terms

Quadratic age effect

If we define xi to be age for
individual i and yi to be income
category,

ŷi = β̂0 + xi β̂1 + x2
i β̂2

This produces a much better fit
to the data. ●
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Higher Order Polynomials

Approximating data generated with a sine function. Red line is a first degree
polynomial, green line is second degree, orange line is third degree and blue is
fourth degree
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Conclusion

In this brave new world with 2 independent variables:

1 β’s have slightly different interpretations

2 OLS still minimizing the sum of the squared residuals

3 Small adjustments to OLS assumptions and inference

4 Adding or omitting variables in a regression can affect the bias and
the variance of OLS

5 We can optionally consider interactions, but must take care to
interpret them correctly
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Next Week

OLS in its full glory

Reading:
I Practice up on matrices
I Fox Chapter 9.1-9.4 (skip 9.1.1-9.1.2) Linear Models in Matrix Form
I Aronow and Miller 4.1.2-4.1.4 Regression with Matrix Algebra
I Optional: Fox Chapter 10 Geometry of Regression
I Optional: Imai Chapter 4.3-4.3.3
I Optional: Angrist and Pischke Chapter 3.1 Regression Fundamentals
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1 Two Examples

2 Adding a Binary Variable

3 Adding a Continuous Covariate

4 Once More With Feeling

5 OLS Mechanics and Partialing Out

6 Fun With Red and Blue

7 Omitted Variables

8 Multicollinearity

9 Dummy Variables

10 Interaction Terms

11 Polynomials

12 Conclusion

13 Fun With Interactions
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Fun With Interactions

Remember that time I mentioned people doing strange things with
interactions?

Brooks and Manza (2006). “Social Policy Responsiveness in Developed
Democracies.” American Sociological Review.

Breznau (2015) “The Missing Main Effect of Welfare State Regimes: A
Replication of ‘Social Policy Responsiveness in Developed Democracies.”’
Sociological Science.
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Original Argument

Public preferences shape welfare state trajectories over the long term

Democracy empowers the masses, and that empowerment helps
define social outcomes

Key model is interaction between liberal/non-liberal and public
preferences on social spending

but. . . they leave out a main effect.
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Omitted Term

They omit the marginal term for liberal/non-liberal

This forces the two regression lines to intersect at public preferences
= 0.

They mean center so the 0 represents the average over the entire
sample
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What Happens?
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Moral of the Story

Seriously, don’t omit lower order terms.

<drops mic>
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