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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I Monday:

F matrix form of linear regression

I Wednesday:
F hypothesis tests

Next Week
I break!
I then . . . regression in social science

Long Run
I probability → inference → regression

Questions?
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1 Matrix Algebra Refresher

2 OLS in matrix form

3 OLS inference in matrix form

4 Inference via the Bootstrap

5 Some Technical Details

6 Fun With Weights

7 Appendix

8 Testing Hypotheses about Individual Coefficients

9 Testing Linear Hypotheses: A Simple Case

10 Testing Joint Significance

11 Testing Linear Hypotheses: The General Case

12 Fun With(out) Weights
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Why Matrices and Vectors?

Here’s one way to write the full multiple regression model:

yi = β0 + xi1β1 + xi2β2 + · · ·+ xiKβK + ui

Notation is going to get needlessly messy as we add variables

Matrices are clean, but they are like a foreign language

You need to build intuitions over a long period of time (and they will
return in Soc504)

Reminder of Parameter Interpretation:
β1 is the effect of a one-unit change in xi1 conditional on all other xik .

We are going to review the key points quite quickly just to refresh the
basics.
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Matrices and Vectors

A matrix is just a rectangular array of numbers.

We say that a matrix is n × K (“n by K”) if it has n rows and K
columns.

Uppercase bold denotes a matrix:

A =


a11 a12 · · · a1K
a21 a22 · · · a2K

...
...

. . .
...

an1 an2 · · · anK


Generic entry: aik where this is the entry in row i and column k
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Design Matrix

One example of a matrix that we’ll use a lot is the design matrix, which
has a column of ones, and then each of the subsequent columns is each
independent variable in the regression.

X =


1 exports1 age1 male1
1 exports2 age2 male2
...

...
...

...
1 exportsn agen malen


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Vectors

A vector is just a matrix with only one row or one column.

A row vector is a vector with only one row, sometimes called a 1× K
vector:

α =
[
α1 α2 α3 · · · αK

]
A column vector is a vector with one column and more than one row.
Here is a n × 1 vector:

y =


y1
y2
...
yn


Convention: we’ll assume that a vector is column vector and vectors
will be written with lowercase bold lettering (b)
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Vector Examples

One common vector that we will work with are individual variables, such
as the dependent variable, which we will represent as y:

y =


y1
y2
...
yn


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Transpose

There are many operations we’ll do on vectors and matrices, but one
is very fundamental: the transpose.

The transpose of a matrix A is the matrix created by switching the
rows and columns of the data and is denoted A′. That is, the kth
column becomes the kth row.

Q =

 q11 q12
q21 q22
q31 q32

 Q′ =

[
q11 q21 q31
q12 q22 q32

]

If A is j × k, then A′ will be k × j .
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Transposing Vectors

Transposing will turn a k × 1 column vector into a 1× k row vector and
vice versa:

ω =


1
3
2
−5

 ω′ =
[

1 3 2 −5
]
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Addition and Subtraction

To perform addition/subtraction the matrices/vectors need to be
conformable, meaning that the dimensions have to be the same

Let A and B both be 2× 2 matrices. Then, let C = A + B, where we
add each cell together:

A + B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
=

[
c11 c12
c21 c22

]
= C
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Scalar Multiplication

A scalar is just a single number: you can think of it sort of like a 1 by
1 matrix.

When we multiply a scalar by a matrix, we just multiply each
element/cell by that scalar:

αA = α

[
a11 a12
a21 a22

]
=

[
α× a11 α× a12
α× a21 α× a22

]
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The Linear Model with New Notation

Remember that we wrote the linear model as the following for all
i ∈ [1, . . . , n]:

yi = β0 + xiβ1 + ziβ2 + ui

Imagine we had an n of 4. We could write out each formula:

y1 = β0 + x1β1 + z1β2 + u1 (unit 1)

y2 = β0 + x2β1 + z2β2 + u2 (unit 2)

y3 = β0 + x3β1 + z3β2 + u3 (unit 3)

y4 = β0 + x4β1 + z4β2 + u4 (unit 4)
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The Linear Model with New Notation

y1 = β0 + x1β1 + z1β2 + u1 (unit 1)

y2 = β0 + x2β1 + z2β2 + u2 (unit 2)

y3 = β0 + x3β1 + z3β2 + u3 (unit 3)

y4 = β0 + x4β1 + z4β2 + u4 (unit 4)

We can write this as:
y1
y2
y3
y4

 =


1
1
1
1

β0 +


x1
x2
x3
x4

β1 +


z1
z2
z3
z4

β2 +


u1
u2
u3
u4


Outcome is a linear combination of the the x, z, and u vectors
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Grouping Things into Matrices

Can we write this in a more compact form?
Yes! Let X and β be the following:

X
(4×3)

=


1 x1 z1
1 x2 z2
1 x3 z3
1 x4 z4

 β
(3×1)

=

 β0
β1
β2


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Matrix multiplication by a vector

We can write this more compactly as a matrix (post-)multiplied by a
vector:


1
1
1
1

β0 +


x1
x2
x3
x4

β1 +


z1
z2
z3
z4

β2 = Xβ

Multiplication of a matrix by a vector is just the linear combination of
the columns of the matrix with the vector elements as
weights/coefficients.

And the left-hand side here only uses scalars times vectors, which is
easy!
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General Matrix by Vector Multiplication

A is a n × K matrix

b is a K × 1 column vector

Columns of A have to match rows of b

Let ak be the kth column of A. Then we can write:

c
(j×1)

= Ab = b1a1 + b2a2 + · · ·+ bKaK

c is linear combination of the columns of A
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Back to Regression

X is the n × (K + 1) design matrix of independent variables

β be the (K + 1)× 1 column vector of coefficients.

Xβ will be n × 1:

Xβ = β0 + β1x1 + β2x2 + · · ·+ βKxK

We can compactly write the linear model as the following:

y
(n×1)

= Xβ
(n×1)

+ u
(n×1)

We can also write this at the individual level, where x′i is the ith row
of X:

yi = x′iβ + ui
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Matrix Multiplication

What if, instead of a column vector b, we have a matrix B with
dimensions K ×M.

How do we do multiplication like so C = AB?

Each column of the new matrix is just matrix by vector multiplication:

C = [c1 c2 · · · cM ] ck = Abk

Thus, each column of C is a linear combination of the columns of A.
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Special Multiplications

The inner product of a two column vectors a and b (of equal
dimension, K × 1):

a′b = a1b1 + a2b2 + · · ·+ aKbK

Special case of above: a′ is a matrix with K columns and just 1 row,
so the “columns” of a′ are just scalars.
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Sum of the Squared Residuals

Example: let’s say that we have a vector of residuals, û, then the
inner product of the residuals is:

û′û =
[
û1 û2 · · · ûn

]


û1
û2
...
ûn


û′û = û1û1 + û2û2 + · · ·+ ûnûn =

n∑
i=1

û2i

It’s just the sum of the squared residuals!
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Square Matrices and the Diagonal

A square matrix has equal numbers of rows and columns.

The diagonal of a square matrix are the values ajj :

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The identity matrix, I is a square matrix, with 1s along the diagonal
and 0s everywhere else.

I =

 1 0 0
0 1 0
0 0 1


The identity matrix multiplied by any matrix returns the matrix:
AI = A.
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Multiple Linear Regression in Matrix Form

Let β̂ be the matrix of estimated regression coefficients and ŷ be the
vector of fitted values:

β̂ =


β̂0
β̂1
...

β̂k

 ŷ = Xβ̂

It might be helpful to see this again more written out:

ŷ =


ŷ1
ŷ2
...
ŷn

 = Xβ̂ =


1β̂0 + x11β̂1 + x12β̂2 + · · ·+ x1K β̂K
1β̂0 + x21β̂1 + x22β̂2 + · · ·+ x2K β̂K

...

1β̂0 + xn1β̂1 + xn2β̂2 + · · ·+ xnK β̂K


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Residuals

We can easily write the residuals in matrix form:

û = y − Xβ̂

Our goal as usual is to minimize the sum of the squared residuals,
which we saw earlier we can write:

û′û = (y − Xβ̂)′(y − Xβ̂)
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OLS Estimator in Matrix Form

Goal: minimize the sum of the squared residuals

Take (matrix) derivatives, set equal to 0

Resulting first order conditions:

X′(y − Xβ̂) = 0

Rearranging:
X′Xβ̂ = X′y

In order to isolate β̂, we need to move the X′X term to the other side
of the equals sign.

We’ve learned about matrix multiplication, but what about matrix
“division”?
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Scalar Inverses

What is division in its simplest form? 1
a is the value such that a 1

a = 1:

For some algebraic expression: au = b, let’s solve for u:

1

a
au =

1

a
b

u =
b

a

Need a matrix version of this: 1
a .
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Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A−1, is the matrix
such that A−1A = I.

We can use the inverse to solve (systems of) equations:

Au = b

A−1Au = A−1b

Iu = A−1b

u = A−1b

If the inverse exists, we say that A is invertible or nonsingular.
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Back to OLS

Let’s assume, for now, that the inverse of X′X exists

Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

Memorize this: “ex prime ex inverse ex prime y” sear it into your soul.
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Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is roughly composed of the covariances between
the columns of X and y

“Denominator” X′X is roughly composed of the sample variances and
covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

This is a rough sketch and isn’t strictly true, but it can provide
intuition.
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General OLS Assumptions

1 Linearity: y = Xβ + u

2 Random/iid sample: (yi , x
′
i ) are a iid sample from the population.

3 No perfect collinearity: X is an n × (K + 1) matrix with rank K + 1

4 Zero conditional mean: E[u|X] = 0

5 Homoskedasticity: var(u|X) = σ2uIn
6 Normality: u|X ∼ N(0, σ2uIn)
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No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.

In matrix form: X is an n × (K + 1) matrix with rank K + 1

If X has rank K + 1, then all of its columns are linearly independent

. . . and none of its columns are linearly dependent =⇒ no perfect
collinearity

X has rank K + 1 =⇒ (X′X) is invertible

Just like variation in X led us to be able to divide by the variance in
simple OLS
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Expected Values of Vectors

The expected value of the vector is just the expected value of its
entries.

Using the zero mean conditional error assumptions:

E[u|X] =


E[u1|X]
E[u2|X]

...
E[un|X]

 =


0
0
...
0

 = 0
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OLS is Unbiased

Under matrix assumptions 1-4, OLS is unbiased for β:

E[β̂] = β
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Unbiasedness of β̂

Is E [β̂] = β?

β̂ =
(
X′X

)−1
X′y (linearity and no collinearity)

β̂ =
(
X′X

)−1
X′(Xβ + u)

β̂ =
(
X′X

)−1
X′Xβ +

(
X′X

)−1
X′u

β̂ = Iβ +
(
X′X

)−1
X′u

β̂ = β +
(
X′X

)−1
X′u

E [β̂|X] = E [β|X] + E [
(
X′X

)−1
X′u|X]

E [β̂|X] = β +
(
X′X

)−1
X′E [u|X]

E [β̂|X] = β (zero conditional mean)

So, yes!
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A Much Shorter Proof of Unbiasedness of β̂

A shorter but perhaps less informative proof of unbiasedness,

E [β̂] = E [
(
X′X

)−1
X′y] (definition of the estimator)

=
(
X′X

)−1
X′Xβ (expectation of y)

= β
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Variance-Covariance Matrix

The homoskedasticity assumption is different: var(u|X) = σ2uIn

In order to investigate this, we need to know what the variance of a
vector is.

The variance of a vector is actually a matrix:

var[u] = Σu =


var(u1) cov(u1, u2) . . . cov(u1, un)

cov(u2, u1) var(u2) . . . cov(u2, un)
...

. . .

cov(un, u1) cov(un, u2) . . . var(un)


This matrix is symmetric since cov(ui , uj) = cov(uj , ui )
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Matrix Version of Homoskedasticity

Once again: var(u|X) = σ2uIn

In is the n × n identity matrix

Visually:

var[u] = σ2uIn =


σ2u 0 0 . . . 0
0 σ2u 0 . . . 0

...
0 0 0 . . . σ2u


In less matrix notation:

I var(ui ) = σ2
u for all i (constant variance)

I cov(ui , uj) = 0 for all i 6= j (implied by iid)
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Sampling Variance for OLS Estimates

Under assumptions 1-5, the sampling variance of the OLS estimator
can be written in matrix form as the following:

var[β̂] = σ2u(X′X)−1

This matrix looks like this:

β̂0 β̂1 β̂2 · · · β̂K
β̂0 var[β̂0] cov[β̂0, β̂1] cov[β̂0, β̂2] · · · cov[β̂0, β̂K ]

β̂1 cov[β̂0, β̂1] var[β̂1] cov[β̂1, β̂2] · · · cov[β̂1, β̂K ]

β̂2 cov[β̂0, β̂2] cov[β̂1, β̂2] var[β̂2] · · · cov[β̂2, β̂K ]
...

...
...

...
. . .

...

β̂K cov[β̂0, β̂K ] cov[β̂K , β̂1] cov[β̂K , β̂2] · · · var[β̂K ]
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Sampling Distribution for β̂j

Under the first four assumptions,

β̂j |X ∼ N
(
βj ,SE (β̂j)

2
)

SE (β̂j)
2 =

1

1− R2
j

σ2u∑n
i=1(xij − x̄j)2

where R2
j is from the regression of xj on all other explanatory variables.
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Inference in the General Setting
Under assumption 1-5 in large samples:

β̂k − βk
ŜE [β̂k ]

∼ N(0, 1)

In small samples, under assumptions 1-6,

β̂k − βk
ŜE [β̂k ]

∼ tn−(K+1)

Thus, under the null of H0 : βk = 0, we know that

β̂k

ŜE [β̂k ]
∼ tn−(K+1)

Here, the estimated SEs come from:

v̂ar[β̂] = σ̂2u(X′X)−1

σ̂2u =
û′û

n − (k + 1)
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Properties of the OLS Estimator: Summary

Theorem

Under Assumptions 1–6, the (k + 1)× 1 vector of OLS estimators β̂, conditional
on X, follows a multivariate normal distribution with mean β and
variance-covariance matrix σ2 (X′X)

−1
:

β̂|X ∼ N
(
β, σ2 (X′X)

−1
)

Each element of β̂ (i.e. β̂0, ..., β̂k+1) is normally distributed, and β̂ is an
unbiased estimator of β as E [β̂] = β

Variances and covariances are given by V [β̂|X] = σ2 (X′X)−1

An unbiased estimator for the error variance σ2 is given by

σ̂2 =
û′û

n − (k + 1)

With a large sample, β̂ approximately follows the same distribution under
Assumptions 1–5 only, i.e., without assuming the normality of u.
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Implications of the Variance-Covariance Matrix

Note that the sampling distribution of β̂ has covariance terms

In a practical sense, this means that our uncertainty about
coefficients is correlated across variables.

Let’s go to the board and discuss!
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Motivation for the Bootstrap

Sometimes it is hard to calculate the sampling distribution.

Bootstrapping provides an alternative way to calculate the sampling
distribution of a function of a sample when that function is smooth.

Let’s work through an example.
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Sample

Suppose that a week before the 2012 election, you contacted a sample of
n = 625 potential Florida voters, randomly selected (with replacement)
from the population of N = 11, 900, 000 on the public voters register, to
ask whether they planned to vote.

Suppose also,

voters register is completely up to date

all potential voters can be contacted, will respond honestly to your
questions, and will not change their minds about voting

Table: Sample

i 1 2 3 4 . . . 625 ȳ625
yi 1 1 0 1 . . . 0 .68
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Sample versus Population

Table: Sample

i 1 2 3 4 . . . 625 ȳ625
yi 1 1 0 1 . . . 0 .68

After election day, we found that in fact 71% of the registered voters
turned out to vote.

Table: Population

j 1 2 3 4 . . . . . . . . . . . . 11.9 mil ȳ11.9mil

yj 0 1 0 1 . . . . . . . . . . . . 1 .71
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Sampling Distribution

Table: Sampling Distribution of Y 625

i 1 2 . . . 625

s J1 Y1 J2 Y2 . . . J625 Y625 Y 625

1 9562350 1 8763351 1 . . . 1294801 0 .68
2 5331704 0 4533839 1 . . . 3342359 1 .70
3 5129936 0 10981600 0 . . . 4096184 1 .75
4 803605 0 7036389 1 . . . 803605 0 .73
5 148567 0 3833847 1 . . . 4769869 1 .69
...

...
...

...
...

...
...

...
...

1 mil 4163458 0 8384613 1 . . . 377981 1 .74
...

...
...

...
...

...
...

...
...

f· Be(.71) Be(.71) Be(.71) Bin(625,.71)
625
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The Sampling Distribution in R

# Resample the number of voters 1,000,000

# times and store these 1,000,000

# numbers in a vector.

sumY_vec <- rbinom(1000000, size=625, prob=.71)

# Divide all of these numbers

# by the sample size.

Ybar_vec <- sumY_vec/625

# Plot a histogram

hist(Ybar_vec)
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Sampling Distribution of Y625
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Bootstrapping

At the time of our sample, we don’t observe the population or population
proportion (.71), so we cannot construct the sampling distribution.

However, we can take repeated random samples with replacement of size
625 from the sample of size 625.

Table: Sample

i 1 2 3 4 . . . 625 ȳ625
yi 1 1 0 1 . . . 0 .68

The is equivalent to replacing .71 with .68 in the R code.

sumY_vec <- rbinom(1000000, size=625, prob=.68)
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Estimated Sampling Distribution of Y625
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.
It turns out that σ̂2 ∼ χ2

n−(K+1).
But instead we’ll use Bootstrap:

1) Sample from data set, with replacement n times, X̃
2) Calculate f (X̃ ) (in this case a regression)

3) Repeat M times, form distribution of statistics

4) Calculate confidence interval by identifying α/2 and 1− α/2 value of
statistic. (percentile method)
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Confidence Intervals, via Bootstrap
Suppose we draw 20 realizations of

Xi ∼ Normal(1, 10)

Bootstrapped 95% confidence interval for σ2:
[5.00, 20.11] (with mean 12.05)
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The Bootstrap More Formally

What we are discussing is the nonparametric bootstrap

y1, . . . , yn are the outcomes of independent and identically distributed
random variables Y1, . . . ,Yn whose PDF and CDF are denoted by f
and F .

The sample is used to make inferences about an estimand, denoted by
θ using a statistic T whose value in the sample is t.

If we observed F , statistical inference would be very easy, but instead
we observe F̂ , which is the empirical distribution that put equal
probabilities n−1 at each sample value yi .

I Estimates are constructed by the plug-in principle, which says that the
parameter θ = t(F ) is estimated by θ̂ = t(F̂ ). (i.e. we plug in the
ECDF for the CDF)

I Why does this work? Sampling distribution entirely determined by the
CDF and n, WLLN says the ECDF will look more and more like the
CDF as n gets large.
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When Does the Bootstrap Fail?
Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:

Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).
Dependent data: nonparametric bootstrap assumes data so
independent so will not work with time series data or other dependent
structures.

I For clustered data, standard bootstrap will not work, but the block
bootstrap will work. In the block bootstrap, clusters are resampled (not
necessarily units) with replacement.

I More on this later.

Many other variants that may be right for certain situations:
studentized intervals, jackknife, parametric bootstrap, bag of little
bootstraps, bootstrapping for complex survey designs, etc.

Fox Chapter 21 has a nice section on the bootstrap, Aronow and Miller
(2016) covers the theory well.
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This Section

The next few slides have some technical details of vector/matrix
calculus

You won’t be tested on this material but its necessary for the proofs
in the appendix

It will also come back in Soc504 where you will need to know this
stuff, so its worth thinking about now (but I will reintroduce it next
semester).

We will just preview this stuff now, but I’m happy to answer questions
for those who want to engage it more.
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Gradient

Let v = v(u) be a scalar-valued function Rn → R1 where u is a (n × 1) column

vector. For example: v(u) = c′u where c =

 0
1
3

 and u =

 u1
u2
u3


Definition (Gradient)

We can define the column vector of partial derivatives

∂v(u)

∂u
=


∂v/∂u1
∂v/∂u2

...
∂v/∂un


This vector of partial derivatives is called the gradient.
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Vector Derivative Rule I (linear functions)

Theorem (differentiation of linear functions)

Given a linear function v(u) = c′u of an (n × 1) vector u, the derivative of v(u)
w.r.t. u is given by

∂v

∂u
= c

This also works when c is a matrix and therefore v is a vector-valued function.

For example, let v(u) = c′u where c =

 0
1
3

 and u =

 u1
u2
u3

 , then

v = c′u = 0 · u1 + 1 · u2 + 3 · u3

and
∂v

∂u
=

 ∂v/∂u1
∂v/∂u2
∂v/∂u3

 =

 0
1
3

 = c

Hence, ∂v

∂u
= c
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Vector Derivative Rule II (quadratic form)

Theorem (quadratic form)

Given a (n × n) symmetric matrix A and a scalar-valued function v(u) = u′Au of
(n × 1) vector u, we have

∂v

∂u
= A′u + Au = 2Au

For example, let A =

[
3 1
1 5

]
and u =

[
u1
u2

]
.Then v(u) = u′Au is equal to

v = [3 · u1 + u2, u1 + 5 · u2]

[
u1
u2

]
= 3u21 + 2u1u2 + 5u22

and

∂v

∂u
=

[
∂v/∂u1
∂v/∂u2

]
=

[
6u1 + 2u2

2u1 + 10u2

]
= 2 ·

[
3u1 + 1u2
1u1 + 5u2

]
= 2Au
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Hessian

Suppose v is a scalar-valued function v = f (u) of a (k + 1)× 1 column
vector u =

[
u1 u2 · · · uk+1

]′
Definition (Hessian)

The (k + 1)× (k + 1) matrix of second-order partial derivatives of
v = f (u) is called the Hessian matrix and denoted

∂v2

∂u∂u′
=


∂v2

∂u1∂u1
· · · ∂v2

∂u1∂uk+1
...

. . .
...

∂v2

∂uk+1∂u1
· · · ∂v2

∂uk+1∂uk+1


Note: The Hessian is symmetric.

The above rules are used to derive the optimal estimators in the appendix
slides.
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Conclusion

Multiple regression is much like the regression formulations we have
already seen

We showed how to estimate the coefficients and get the variance
covariance matrix

We discussed the bootstrap as an alternative strategy for estimating
the sampling distribution

Appendix contains numerous additional topics worth knowing:
I Systems of Equations
I Details on the variance/covariance interpretation of estimator
I Derivation for the estimator
I Proof of consistency
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Fun With Weights

Aronow, Peter M., and Cyrus Samii. ”Does Regression Produce
Representative Estimates of Causal Effects?.” American Journal of
Political Science (2015).2

Imagine we care about the possibly heterogeneous causal effect of a
treatment D and we control for some covariates X?

We can express the regression as a weighting over individual
observation treatment effects where the weight depends only on X .

Useful technology for understanding what our models are identifying
off of by showing us our effective sample.

2I’m grateful to Peter Aronow for sharing his slides, several of which are used here.
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How this works

We start by asking what the estimate of the average causal effect of
interest converges to in a large sample:

β̂
p→ E [wiτi ]

E [wi ]
where wi = (Di − E [Di |X ])2 ,

so that β̂ converges to a reweighted causal effect. As
E [wi |Xi ] = Var[Di |Xi ], we obtain an average causal effect reweighted by
conditional variance of the treatment.
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Estimation

A simple, consistent plug-in estimator of wi is available: ŵi = D̃2
i where

D̃i is the residualized treatment. (the proof is connected to the partialing
out strategy we showed last week)

Easily implemented in R:

wts <- (d - predict(lm(d~x)))^2

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 68 / 145



Implications

Unpacking the black box of regression gives us substantive insight

When some observations have no weight, this means that the
covariates completely explain their treatment condition.

This is a feature, not a bug, of regression: it can automatically handle
issues of common support.
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Application

Jensen (2003), “Democratic Governance and Multinational Corporations:
Political Regimes and Inflows of Foreign Direct Investment.”

Jensen presents a large-N TSCS-analysis of the causal effects of
governance (as measured by the Polity III score) on Foreign Direct
Investment (FDI).

The nominal sample: 114 countries from 1970 to 1997.

Jensen estimates that a 1 unit increase in polity score corresponds to a
0.020 increase in net FDI inflows as a percentage of GDP (p < 0.001).

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 70 / 145



Nominal and Effective Samples
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Nominal and Effective Samples
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Nominal and Effective Samples

Over 50% of the weight goes to just 12 (out of 114) countries.
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Broader Implications

When causal effects are heterogeneous, we can draw a distinction between
“internally valid” and “externally valid” estimates of an Average Causal
Effect (ACE). (See, e.g., Cook and Campbell 1979)

“Internally valid”: reliable estimates of ACEs, but perhaps not for the
population you care about

I randomized (lab, field, survey) experiments, instrumental variables,
regression discontinuity designs, other natural experiments

“Externally valid”: perhaps unreliable estimates of ACEs, but for the
population of interest

I large-N analyses, representative surveys
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Broader Implications

Aronow and Samii argue that analyses which use regression, even with a
representative sample, have no greater claim to external validity than do
[natural] experiments.

When a treatment is “as-if” randomly assigned conditional on
covariates, regression distorts the sample by implicitly applying
weights.

The effective sample (upon which causal effects are estimated) may
have radically different properties than the nominal sample.

When there is an underlying natural experiment in the data, a
properly specified regression model may reproduce the internally valid
estimate associated with the natural experiment.
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Solving Systems of Equations Using Matrices

Matrices are very useful to solve linear systems of equations, such as the
first order conditions for our least squares estimates.

Here is an example with three equations and three unknowns:

x + 2y + z = 3

3x − y − 3z = −1

2x + 3y + z = 4

How would one go about solving this?
There are various techniques, including substitution, and multiplying
equations by constants and adding them to get single variables to cancel.
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Solving Systems of Equations Using Matrices

An easier way is to use matrix algebra. Note that the system of equations

x + 2y + z = 3

3x − y − 3z = −1

2x + 3y + z = 4

can be written as follows: 1 2 1
3 −1 −3
2 3 1

 x
y
z

 =

 3
−1

4

 ⇐⇒ Au = b

How do we solve this for u =

 x
y
z

? Let’s look again at the scalar case first.
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Solving Equations with Inverses (scalar case)

Let’s go back to the scalar world of 8th grade algebra. How would you solve the
following for u?

au = b

We multiply both sides of by the reciprocal 1/a (the inverse of a) and get:

1

a
a u =

1

a
b

u =
b

a

(Note that this technique only works if a 6= 0. If a = 0, then there are either an
infinite number of solutions for u (when b = 0), or no solutions for u (when
b 6= 0).)

So to solve our multiple equation problem in the matrix case we need a matrix
equivalent of the inverse. This equivalent is the inverse matrix. The inverse of A
is written as A−1.
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Inverse of a Matrix

The inverse A−1 of A has the property that A−1A = AA−1 = I where I is the
identity matrix.

The inverse A−1 exists only if A is invertible or nonsingular (more on this
soon)

The inverse is unique if it exists and then the linear system has a unique
solution.

There are various methods for finding/computing the inverse of a matrix

The inverse matrix allows us to solve linear systems of equations.

Au = b

A−1Au = A−1b

Iu = A−1b

u = A−1b
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Given A we find that A−1 is:

A =

 1 2 1
3 −1 −3
2 3 1

 ; A−1 =

 8 1 −5
−9 −1 6
11 1 −7


We can now solve our system of equations:

u = A−1b =

 8 1 −5
−9 −1 6
11 1 −7

 3
−1

4

 =

 3
−2

4


So the solution vector is x = 3, y = −2, and z = 4. Verifying:

x + 2y + z = 3 + 2 · −2 + 4 = 3

3x − y − 3z = 3 · 3−−2− 3 · 4 = −1

2x + 3y + z = 2 · 3 + 3 · −2 + 4 = 4

Computationally, this method is very convenient. We “just” compute the inverse,
and perform a single matrix multiplication.
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Singularity of a Matrix

If the inverse of A exists, then the linear system has a unique (non-trivial)
solution. If it exists, we say that A is nonsingular or invertible (these statements
are equivalent).

A must be square to be invertible, but not all square matrices are invertible. More
precisely, a square matrix A is invertible iff its column vectors (or equivalently its
row vectors) are linearly independent.

The column rank of a matrix A is the largest number of linearly independent
columns of A. If the rank of A equals the number of columns of A, then we say
that A has full column rank. This implies that all its column vectors are linearly
independent.

If a column of A is a linear combination of the other columns, there are either no
solutions to the system of equations or infinitely many solutions to the system of
equations. The system is said to be underdetermined.
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Geometric Example in 2D

Unique Solution Redundant Equation No Solution 

A =

[
1 −1
3 1

]
A =

 4 3
1 −2
3 5

 A =

[
3 2
3 2

]
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Why do we care about invertibility?

We have seen that OLS regression is defined by a system of linear equations

ŷ =


ŷ1
ŷ2
...
ŷn

 = Xβ̂ =


1β̂0 + x11β̂1 + x12β̂2 + · · ·+ x1k β̂k
1β̂0 + x21β̂1 + x22β̂2 + · · ·+ x2k β̂k

...

1β̂0 + xn1β̂1 + xn2β̂2 + · · ·+ xnk β̂k


with our data matrix

X =


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

...
...

1 xn1 xn2 . . . xnk


We have also learned that β̂ is obtained by solving normal equations, a linear
system of equations.

It turns out that to solve for β̂, we need to invert X′X, a (k + 1)× (k + 1)

matrix.
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Some Non-invertible Explanatory Data Matrices
X′X is invertible iff X is full column rank (see Wooldridge D.4), so the collection
of predictors need to be linearly independent (no perfect collinearity).

Some example of X that are not full column rank:

X =


1 2 −2
1 3 −3
1 4 −4
1 5 −5



X =


1 54 54, 000
1 37 37, 000
1 89 89, 000
1 72 72, 000



X =


1 0 1
1 1 0
1 1 0
1 0 1


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Covariance/variance interpretation of matrix OLS

X′y =
n∑

i=1


yi

yixi1
yixi2

...
yixiK

 ≈


ny
ĉov(yi , xi1)
ĉov(yi , xi2)

...
ĉov(yi , xiK )



X′X =
n∑

i=1


1 xi1 xi2 · · · xiK
xi1 x2

i1 xi2xi1 · · · xi1xiK
xi2 xi1xi2 x2

i2 · · · xi2xiK
...

...
...

. . .
...

xiK xi1xiK xi2xiK · · · xiKxiK

 ≈


n nx1 nx2 · · · nxK

nx1 v̂ar(xi1) ĉov(xi1, xi2) · · · ĉov(xi1, xiK )
nx2 ĉov(xi2, xi1) v̂ar(xi2) · · · ĉov(xi2, xiK )

...
...

...
. . .

...
nxK ĉov(xiK , xi1) ĉov(xiK , xi2) · · · v̂ar(xiK )


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Derivatives with respect to β̃

S(β̃,X, y) = (y − Xβ̃)′(y − Xβ̃)

= y′y − 2y′Xβ̃ + β̃
′
X′Xβ̃

∂S(β̃,X, y)

∂β̃
= − 2X′y + 2X′Xβ̃

The first term does not contain β̃

The second term is an example of rule I from the derivative section

The third term is an example of rule II from the derivative section

And while we are at it the Hessian is:

∂2S(β̃,X, y)

∂β̃∂β̃
′ = 2X′X
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Solving for β̂

∂S(β̃,X, y)

∂β̃
= −2X′y + 2X′Xβ̃

Setting the vector of partial derivatives equal to zero and substituting β̂
for β̃ , we can solve for the OLS estimator.

0 = −2X′y + 2X′Xβ̂

− 2X′Xβ̂ = −2X′y

X′Xβ̂ = X′y(
X′X

)−1
X′Xβ̂ =

(
X′X

)−1
X′y

Iβ̂ =
(
X′X

)−1
X′y

β̂ =
(
X′X

)−1
X′y

Note that we implicitly assumed that X′X is invertible.
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Variance-Covariance Matrix of Random Vectors

Let’s unpack the homoskedasticity assumption V [u|X] = σ2In.

Definition (variance-covariance matrix)

For a (n × 1) random vector u =
[
u1 u2 . . . un

]′
, its

variance-covariance matrix, denoted V [u] or also Σu, is defined as:

V [u] = Σu =


σ21 σ212 . . . σ21n
σ221 σ22 . . . σ22n

... . . .
σ2n1 σ2n2 . . . σ2n


where σ2j = V [uj ] and σ2ij = Cov [ui , uj ].

Notice that this matrix is always symmetric.
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Homoskedasticity in Matrix Notation

If V [ui ] = σ2 for all i = 1, ..., n and the units are independent then
V [u] = σ2In.
More visually:

V [u] = σ2In =


σ2 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 0 . . . σ2


So homoskedasticity V [u|X] = σ2In implies that:

1 V [ui |X] = σ2 for all i (the variance of the errors ui does not depend
on X and is constant across observations)

2 Cov [ui , uj |X] = 0 for all i 6= j (the errors are uncorrelated across
observations). This holds under our random sampling assumption.
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Estimation of the Error Variance

Given our vector of regression error terms u, what is E [uu′]?

E [uu′] =


E [u21 ] E [u1u2] . . . E [u1un]
E [u2u1] E [u22 ] . . . E [u2un]

...
...

. . .
...

E [unu1] E [unu2] . . . E [u2n]

 =


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2


Recall E [ui ] = 0 for all i . So V [ui ] = E [u2i ]− (E [ui ])

2 = E [u2i ] and by
independence E [uiuj ] = E [ui ] · E [uj ] = 0

Var(u) = E [uu′] = σ2I =


σ2 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 0 . . . σ2


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Variance of Linear Function of Random Vector

Definition (Variance of Linear Transformation of Random Vector)

Recall that for a linear transformation of a random variable X we have
V [aX + b] = a2V [X ] with constants a and b.

There is an analogous rule for linear functions of random vectors. Let
v(u) = Au + B be a linear transformation of a random vector u with non-random
vectors or matrices A and B. Then the variance of the transformation is given by:

V [v(u)] = V [Au + B] = AV [u]A′ = AΣuA
′
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Conditional Variance of β̂
β̂ = β + (X′X)

−1 X′u and E [β̂|X] = β + E [(X′X)
−1 X′u|X] = β so the OLS

estimator is a linear function of the errors. Thus:

V [β̂|X] = V [β|X] + V [(X′X)
−1

X′u|X]

= V [(X′X)
−1

X′u|X]

= (X′X)
−1

X′V [u|X]((X′X)
−1

X′)′ (X is nonrandom given X)

= (X′X)
−1

X′V [u|X]X (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2I (X′X)
−1

X′X (X′X)
−1

= σ2 (X′X)
−1

This gives the (k + 1)× (k + 1) variance-covariance matrix of β̂.

To estimate V [β̂|X], we replace σ2 with its unbiased estimator σ̂2, which is now
written using matrix notation as:

σ̂2 =
SSR

n − (k + 1)
=

û′û

n − (k + 1)
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Variance-covariance matrix of β̂

The variance-covariance matrix of the OLS estimators is given by:

V [β̂|X] = σ2
(
X′X

)−1
=

β̂0 β̂1 β̂2 · · · β̂k
β̂0 V [β̂0] Cov[β̂0, β̂1] Cov[β̂0, β̂2] · · · Cov[β̂0, β̂k ]

β̂1 Cov[β̂0, β̂1] V [β̂1] Cov[β̂1, β̂2] · · · Cov[β̂1, β̂k ]

β̂2 Cov[β̂0, β̂2] Cov[β̂1, β̂2] V [β̂2] · · · Cov[β̂2, β̂k ]
...

...
...

...
. . .

...

β̂k Cov[β̂0, β̂k ] Cov[β̂k , β̂1] Cov[β̂k , β̂2] · · · V [β̂k ]
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Consistency of β̂
To show consistency, we rewrite the OLS estimator in terms of sample means so
that we can apply LLN.

First, note that a matrix cross product can be written as a sum of vector products:

X′X =
n∑

i=1

x′ixi and X′y =
n∑

i=1

x′iyi

where xi is the 1× (k + 1) row vector of predictor values for unit i .

Now we can rewrite the OLS estimator as,

β̂ =
(∑n

i=1
x′ixi

)−1 (∑n

i=1
x′iyi
)

=
(∑n

i=1
x′ixi

)−1 (∑n

i=1
x′i (xiβ + ui )

)
= β +

(∑n

i=1
x′ixi

)−1 (∑n

i=1
x′iui

)
= β +

(
1

n

∑n

i=1
x′ixi

)−1(
1

n

∑n

i=1
x′iui

)
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Consistency of β̂

Now let’s apply the LLN to the sample means:(
1

n

n∑
i=1

x′ixi

)
p−→ E [x′ixi ], a (k + 1)× (k + 1) nonsingular matrix.(

1

n

n∑
i=1

x′iui

)
p−→ E [x′iui ] = 0, by the zero cond. mean assumption.

Therefore, we have

plim(β̂) = β + (E [x′ixi ])
−1 · 0

= β.

We can also show the asymptotic normality of β̂ using a similar argument but
with the CLT.
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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I Monday:

F a brief review of matrix algebra
F matrix form of linear regression

I Wednesday:
F hypothesis tests

Next Week
I break!
I then . . . regression in social science

Long Run
I probability → inference → regression

Questions?

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 96 / 145



1 Matrix Algebra Refresher

2 OLS in matrix form

3 OLS inference in matrix form

4 Inference via the Bootstrap

5 Some Technical Details

6 Fun With Weights

7 Appendix

8 Testing Hypotheses about Individual Coefficients

9 Testing Linear Hypotheses: A Simple Case

10 Testing Joint Significance

11 Testing Linear Hypotheses: The General Case

12 Fun With(out) Weights

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 97 / 145



Running Example: Chilean Referendum on Pinochet

The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.

Data: national survey conducted in April and May of 1988 by
FLACSO in Chile.

Outcome: 1 if respondent intends to vote for Pinochet, 0 otherwise.
We can interpret the β slopes as marginal “effects” on the probability
that respondent votes for Pinochet.

Plebiscite was held on October 5, 1988. The No side won with 56%
of the vote, with 44% voting Yes.

We model the intended Pinochet vote as a linear function of gender,
education, and age of respondents.
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Hypothesis Testing in R

R Code
> fit <- lm(vote1 ~ fem + educ + age, data = d)
> summary(fit)
~~~~~
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***
fem 0.1360034 0.0237132 5.735 1.15e-08 ***
educ -0.0607604 0.0138649 -4.382 1.25e-05 ***
age 0.0037786 0.0008315 4.544 5.90e-06 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4875 on 1699 degrees of freedom
Multiple R-squared: 0.05112, Adjusted R-squared: 0.04945
F-statistic: 30.51 on 3 and 1699 DF, p-value: < 2.2e-16
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The t-Value for Multiple Linear Regression

Consider testing a hypothesis about a single regression coefficient βj :

H0 : βj = c

In the simple linear regression we used the t-value to test this kind of
hypothesis.

We can consider the same t-value about βj for the multiple regression:

T =
β̂j − c

ŜE (β̂j)

How do we compute ŜE (β̂j)?

ŜE (β̂j) =

√
V̂ (β̂j) =

√
V̂ (β̂)(j,j) =

√
σ̂2(X′X)−1(j,j)

where A(j,j) is the (j , j) element of matrix A.

That is, take the variance-covariance matrix of β̂ and square root the
diagonal element corresponding to j .
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Hypothesis Testing in R
R Code

> fit <- lm(vote1 ~ fem + educ + age, data = d)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***
fem 0.1360034 0.0237132 5.735 1.15e-08 ***
educ -0.0607604 0.0138649 -4.382 1.25e-05 ***
age 0.0037786 0.0008315 4.544 5.90e-06 ***
---

We can pull out the variance-covariance matrix σ̂2(X′X)−1 in R from the lm() object:
R Code

> V <- vcov(fit)
> V

(Intercept) fem educ age
(Intercept) 2.642311e-03 -3.455498e-04 -5.270913e-04 -3.357119e-05
fem -3.455498e-04 5.623170e-04 2.249973e-05 8.285291e-07
educ -5.270913e-04 2.249973e-05 1.922354e-04 3.411049e-06
age -3.357119e-05 8.285291e-07 3.411049e-06 6.914098e-07

> sqrt(diag(V))
(Intercept) fem educ age

0.0514034097 0.0237132251 0.0138648980 0.0008315105
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Sampling Distribution of the t-Value
The t-values in multiple regressions essentially have the same statistical properties
as the simple regression case. That is,

Theorem (Small-Sample Distribution of the t-Value)

Under Assumptions 1–6, for any sample size n the t-value has the t distribution with
(n − k − 1) degrees of freedom:

T =
β̂j − c

ŜE [β̂j ]
∼ tn−k−1

Theorem (Large-Sample Distribution of the t-Value)

Under Assumptions 1–5, as n→∞ the distribution of the t-value approaches the
standard normal distribution:

T =
β̂j − c

ŜE [β̂j ]

a.∼ N (0, 1) as n→∞

tn−k−1 → N (0, 1) as n→∞, so the difference disappears when n large.

In practice people often just use tn−k−1 to be on the conservative side.
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Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (βj = c) is identical to the simple
regression case, except that our reference distribution is tn−k−1 instead of tn−2.

1 Compute the t-value as T = (β̂j − c)/ŜE [β̂j ]

2 Compare the value to the critical value tα/2 for the α level test, which under
the null hypothesis satisfies

P
(
−tα/2 ≤ T ≤ tα/2

)
= 1− α

3 Decide whether the realized value of T in our data is unusual given the
known distribution of the test statistic.

4 Finally, either declare that we reject H0 or not, or report the p-value.
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Confidence Intervals
To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use tn−k−1 instead of tn−2

Since we know the sampling distribution for our t-value:

T =
β̂j − c

ŜE [β̂j ]
∼ tn−k−1

So we also know the probability that the value of our test statistics falls into a given
interval:

P

(
−tα/2 ≤

β̂j − βj
ŜE [β̂j ]

≤ tα/2

)
= 1− α

We rearrange: [
β̂j − tα/2ŜE [β̂j ] , β̂j + tα/2ŜE [β̂j ]

]
and thus can construct the confidence intervals as usual using:

β̂j ± tα/2 · ŜE [β̂j ]
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Confidence Intervals in R

R Code
> fit <- lm(vote1 ~ fem + educ + age, data = d)
> summary(fit)
~~~~~
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***
fem 0.1360034 0.0237132 5.735 1.15e-08 ***
educ -0.0607604 0.0138649 -4.382 1.25e-05 ***
age 0.0037786 0.0008315 4.544 5.90e-06 ***
---

R Code
> confint(fit)

2.5 % 97.5 %
(Intercept) 0.303407780 0.50504909
fem 0.089493169 0.18251357
educ -0.087954435 -0.03356629
age 0.002147755 0.00540954
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1 Matrix Algebra Refresher

2 OLS in matrix form

3 OLS inference in matrix form

4 Inference via the Bootstrap

5 Some Technical Details

6 Fun With Weights

7 Appendix

8 Testing Hypotheses about Individual Coefficients

9 Testing Linear Hypotheses: A Simple Case

10 Testing Joint Significance

11 Testing Linear Hypotheses: The General Case

12 Fun With(out) Weights
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Testing Hypothesis About a Linear Combination of βj

R Code
> fit <- lm(REALGDPCAP ~ Region, data = D)
> summary(fit)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4452.7 783.4 5.684 2.07e-07 ***
RegionAfrica -2552.8 1204.5 -2.119 0.0372 *
RegionAsia 148.9 1149.8 0.129 0.8973
RegionLatAmerica -271.3 1007.0 -0.269 0.7883
RegionOecd 9671.3 1007.0 9.604 5.74e-15 ***

β̂Asia and β̂LAm are close. So we may want to test the null hypothesis:

H0 : βLAm = βAsia ⇔ βLAm − βAsia = 0

against the alternative of

H1 : βLAm 6= βAsia ⇔ βLAm − βAsia 6= 0

What would be an appropriate test statistic for this hypothesis?
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Testing Hypothesis About a Linear Combination of βj

R Code
> fit <- lm(REALGDPCAP ~ Region, data = D)
> summary(fit)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4452.7 783.4 5.684 2.07e-07 ***
RegionAfrica -2552.8 1204.5 -2.119 0.0372 *
RegionAsia 148.9 1149.8 0.129 0.8973
RegionLatAmerica -271.3 1007.0 -0.269 0.7883
RegionOecd 9671.3 1007.0 9.604 5.74e-15 ***

Let’s consider a t-value:

T =
β̂LAm − β̂Asia

ŜE(β̂LAm − β̂Asia)

We will reject H0 if T is sufficiently different from zero.

Note that unlike the test of a single hypothesis, both β̂LAm and β̂Asia are random
variables, hence the denominator.
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Testing Hypothesis About A Linear Combination of βj
Our test statistic:

T =
β̂LAm − β̂Asia

ŜE (β̂LAm − β̂Asia)
∼ tn−k−1

How do you find ŜE (β̂LAm − β̂Asia)?

Is it ŜE (β̂LAm)− ŜE (β̂Asia)? No!

Is it ŜE (β̂LAm) + ŜE (β̂Asia)? No!

Recall the following property of the variance:

V (X ± Y ) = V (X ) + V (Y )± 2Cov(X ,Y )

Therefore, the standard error for a linear combination of coefficients is:

ŜE (β̂1 ± β̂2) =

√
V̂ (β̂1) + V̂ (β̂2)± 2Ĉov[β̂1, β̂2]

which we can calculate from the estimated covariance matrix of β̂.

Since the estimates of the coefficients are correlated, we need the covariance
term.
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Joint Normality: Simulation
Y = β0 + β1X1 + u with u ∼ N(0, σ2

u = 4) and β0 = 5, β1 = −1, and n = 100:
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Marginal Sampling Distribution
Y = β0 + β1X1 + u with u ∼ N(0, σ2

u = 4) and β0 = 5, β1 = −1, and n = 100:

Sampling Distribution beta_0 hat
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Joint Sampling Distribution
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The variance-covariance matrix of the estimators is:

β̂0 β̂1
β̂0 .08 −.11
β̂1 −.11 .24
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Example: GDP per capita on Regions

R Code
> fit <- lm(REALGDPCAP ~ Region, data = D)

> V <- vcov(fit)

> V

(Intercept) RegionAfrica RegionAsia RegionLatAmerica

(Intercept) 613769.9 -613769.9 -613769.9 -613769.9

RegionAfrica -613769.9 1450728.8 613769.9 613769.9

RegionAsia -613769.9 613769.9 1321965.9 613769.9

RegionLatAmerica -613769.9 613769.9 613769.9 1014054.6

RegionOecd -613769.9 613769.9 613769.9 613769.9

RegionOecd

(Intercept) -613769.9

RegionAfrica 613769.9

RegionAsia 613769.9

RegionLatAmerica 613769.9

RegionOecd 1014054.6
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Example: GDP per capita on Regions

We can then compute the test statistic for the hypothesis of interest:
R Code

> se <- sqrt(V[4,4] + V[3,3] - 2*V[3,4])

> se

[1] 1052.844

>

> tstat <- (coef(fit)[4] - coef(fit)[3])/se

> tstat

RegionLatAmerica

-0.3990977

t =
β̂LAm − β̂Asia

ŜE(β̂LAm − β̂Asia)
where

ŜE(β̂LAm − β̂Asia) =

√
V̂ (β̂LAm) + V̂ (β̂Asia)− 2Ĉov[β̂LAm, β̂Asia]

Plugging in we get t ' −0.40. So what do we conclude?

We cannot reject the null that the difference in average GDP resulted from chance.
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1 Matrix Algebra Refresher

2 OLS in matrix form

3 OLS inference in matrix form

4 Inference via the Bootstrap
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7 Appendix
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11 Testing Linear Hypotheses: The General Case

12 Fun With(out) Weights
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F Test for Joint Significance of Coefficients

In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. β1 = β2 = β3 = 0)

Suppose our regression model is:

Voted = β0 + γ1FEMALE + β1EDUCATION+

γ2(FEMALE · EDUCATION) + β2AGE + γ3(FEMALE · AGE) + u

and we want to test
H0 : γ1 = γ2 = γ3 = 0.

Substantively, what question are we asking?

→ Do females and males vote systematically differently from each other?
(Under the null, there is no difference in either the intercept or slopes between
females and males).

This is an example of a joint hypothesis test involving three restrictions: γ1 = 0,
γ2 = 0, and γ3 = 0.

If all the interaction terms and the group lower order term are close to zero, then
we fail to reject the null hypothesis of no gender difference.

F tests allows us to to test joint hypothesis
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The χ2 Distribution

To test more than one hypothesis jointly we need to introduce some new
probability distributions.

Suppose Z1, ...,Zn are n i.i.d. random variables following N (0, 1).

Then, the sum of their squares, X =
∑n

i=1 Z
2
i , is distributed according to the χ2

distribution with n degrees of freedom, X ∼ χ2
n.
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Properties: X > 0, E [X ] = n and V [X ] = 2n. In R: dchisq(), pchisq(), rchisq()
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The F distribution
The F distribution arises as a ratio of two independent chi-squared distributed random
variables:

F =
X1/df1
X2/df2

∼ Fdf1,df2

where X1 ∼ χ2
df1

, X2 ∼ χ2
df2

, and X1⊥⊥X2.

df1 and df2 are called the numerator degrees of freedom and the denominator degrees of
freedom.
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In R: df(), pf(), rf()
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F Test against H0 : γ1 = γ2 = γ3 = 0.
The F statistic can be calculated by the following procedure:

1 Fit the Unrestricted Model (UR) which does not impose H0:

Vote = β0 +γ1FEM +β1EDUC +γ2(FEM ∗EDUC) +β2AGE +γ3(FEM ∗AGE) +u

2 Fit the Restricted Model (R) which does impose H0:

Vote = β0 + β1EDUC + β2AGE + u

3 From the two results, compute the F Statistic:

F0 =
(SSRr − SSRur )/q

SSRur/(n − k − 1)

where SSR=sum of squared residuals, q=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Intuition:

increase in prediction error

original prediction error

The F statistics have the following sampling distributions:

Under Assumptions 1–6, F0 ∼ Fq,n−k−1 regardless of the sample size.

Under Assumptions 1–5, qF0
a.∼ χ2

q as n→∞ (see next section).
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Unrestricted Model (UR)

R Code
> fit.UR <- lm(vote1 ~ fem + educ + age + fem:age + fem:educ, data = Chile)

> summary(fit.UR)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.293130 0.069242 4.233 2.42e-05 ***

fem 0.368975 0.098883 3.731 0.000197 ***

educ -0.038571 0.019578 -1.970 0.048988 *

age 0.005482 0.001114 4.921 9.44e-07 ***

fem:age -0.003779 0.001673 -2.259 0.024010 *

fem:educ -0.044484 0.027697 -1.606 0.108431

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.487 on 1697 degrees of freedom

Multiple R-squared: 0.05451, Adjusted R-squared: 0.05172

F-statistic: 19.57 on 5 and 1697 DF, p-value: < 2.2e-16
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Restricted Model (R)

R Code
> fit.R <- lm(vote1 ~ educ + age, data = Chile)

> summary(fit.R)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4878039 0.0497550 9.804 < 2e-16 ***

educ -0.0662022 0.0139615 -4.742 2.30e-06 ***

age 0.0035783 0.0008385 4.267 2.09e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4921 on 1700 degrees of freedom

Multiple R-squared: 0.03275, Adjusted R-squared: 0.03161

F-statistic: 28.78 on 2 and 1700 DF, p-value: 5.097e-13
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F Test in R

R Code
> SSR.UR <- sum(resid(fit.UR)^2) # = 402

> SSR.R <- sum(resid(fit.R)^2) # = 411

> DFdenom <- df.residual(fit.UR) # = 1703

> DFnum <- 3

> F <- ((SSR.R - SSR.UR)/DFnum) / (SSR.UR/DFdenom)

> F

[1] 13.01581

> qf(0.99, DFnum, DFdenom)

[1] 3.793171

Given above, what do we conclude?
F0 = 13 is greater than the critical value for a .01 level test. So we reject
the null hypothesis.
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Null Distribution, Critical Value, and Test Statistic
Note that the F statistic is always positive, so we only look at the right tail of the
reference F (or χ2 in a large sample) distribution.
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F Test Examples I

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βkXk + u

We may want to test:
H0 : β1 = β2 = ... = βk = 0

What question are we asking?

→ Does any of the X variables help to predict Y ?

This is called the omnibus test and is routinely reported by statistical
software.
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Omnibus Test in R

R Code
> summary(fit.UR)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.293130 0.069242 4.233 2.42e-05 ***

fem 0.368975 0.098883 3.731 0.000197 ***

educ -0.038571 0.019578 -1.970 0.048988 *

age 0.005482 0.001114 4.921 9.44e-07 ***

fem:age -0.003779 0.001673 -2.259 0.024010 *

fem:educ -0.044484 0.027697 -1.606 0.108431

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.487 on 1697 degrees of freedom

Multiple R-squared: 0.05451, Adjusted R-squared: 0.05172

F-statistic: 19.57 on 5 and 1697 DF, p-value: < 2.2e-16
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F Test Examples II
The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βkXk + u

Next, let’s consider:
H0 : β1 = β2 = β3

What question are we asking?

→ Are the effects of X1, X2 and X3 different from each other?

How many restrictions?

→ Two (β1 − β2 = 0 and β2 − β3 = 0)

How do we fit the restricted model?

→ The null hypothesis implies that the model can be written as:

Y = β0 + β1(X1 + X2 + X3) + ...+ βkXk + u

So we create a new variable X ∗ = X1 + X2 + X3 and fit:

Y = β0 + β1X
∗ + ...+ βkXk + u
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Testing Equality of Coefficients in R
R Code

> fit.UR2 <- lm(REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd, data = D)

> summary(fit.UR2)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1899.9 914.9 2.077 0.0410 *

Asia 2701.7 1243.0 2.173 0.0327 *

LatAmerica 2281.5 1112.3 2.051 0.0435 *

Transit 2552.8 1204.5 2.119 0.0372 *

Oecd 12224.2 1112.3 10.990 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3034 on 80 degrees of freedom

Multiple R-squared: 0.7096, Adjusted R-squared: 0.6951

F-statistic: 48.88 on 4 and 80 DF, p-value: < 2.2e-16

Are the coefficients on Asia, LatAmerica and Transit statistically
significantly different?

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 127 / 145



Testing Equality of Coefficients in R
R Code

> D$Xstar <- D$Asia + D$LatAmerica + D$Transit

> fit.R2 <- lm(REALGDPCAP ~ Xstar + Oecd, data = D)

> SSR.UR2 <- sum(resid(fit.UR2)^2)

> SSR.R2 <- sum(resid(fit.R2)^2)

> DFdenom <- df.residual(fit.UR2)

> F <- ((SSR.R2 - SSR.UR2)/2) / (SSR.UR2/DFdenom)

> F

[1] 0.08786129

> pf(F, 2, DFdenom, lower.tail = F)

[1] 0.9159762

So, what do we conclude?
The three coefficients are statistically indistinguishable from each other,
with the p-value of 0.916.
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t Test vs. F Test
Consider the hypothesis test of

H0 : β1 = β2 vs. H1 : β1 6= β2

What ways have we learned to conduct this test?

Option 1: Compute T = (β̂1 − β̂2)/ŜE (β̂1 − β̂2) and do the t test.

Option 2: Create X ∗ = X1 + X2, fit the restricted model, compute
F = (SSRR − SSRUR)

/
(SSRR/(n − k − 1)) and do the F test.

It turns out these two tests give identical results. This is because

X ∼ tn−k−1 ⇐⇒ X 2 ∼ F1,n−k−1

So, for testing a single hypothesis it does not matter whether one does a t
test or an F test.

Usually, the t test is used for single hypotheses and the F test is used for
joint hypotheses.
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Some More Notes on F Tests

The F-value can also be calculated from R2:

F =
(R2

UR − R2
R)/q

(1− R2
UR)/(n − k − 1)

F tests only work for testing nested models, i.e. the restricted model must
be a special case of the unrestricted model.

For example F tests cannot be used to test

Y = β0 + β1X1

+ β2X2

+ β3X3 + u

against
Y = β0 + β1X1 + β2X2 +

β3X3

+ u
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Some More Notes on F Tests

Joint significance does not necessarily imply the significance of individual
coefficients, or vice versa:

Finite-Sample Properties of OLS 45

Figure 1.5: t- versus F -Tests

An Example of a Test Statistic Whose Distribution Depends on XXX
To place the discussion of this section in a proper perspective, it may be useful
to note that there are some statistics whose conditional distribution depends on X.
Consider the celebrated Durbin-Watson statistic:

∑n
i=2(ei − ei−1)2∑n

i=1 e2i
.

The conditional distribution, and hence the critical values, of this statistic depend
on X, but J. Durbin and G. S. Watson have shown that the critical values fall
between two bounds (which depends on the sample size, the number of regres-
sors, and whether the regressor includes a constant). Therefore, the critical values
for the unconditional distribution, too, fall between these bounds.

The statistic is designed for testing whether there is no serial correlation in
the error term. Thus, the null hypothesis is Assumption 1.4, while the maintained
hypothesis is the other assumptions of the classical regression model (including the
strict exogeneity assumption) and the normality assumption. But, as emphasized
in Section 1.1, the strict exogeneity assumption is not satisfied in time-series mod-
els typically encountered in econometrics, and serial correlation is an issue that
arises only in time-series models. Thus, the Durbin-Watson statistic is not useful
in econometrics. More useful tests for serial correlation, which are all based on
large-sample theory, will be covered in the next chapter.
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2 OLS in matrix form

3 OLS inference in matrix form
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5 Some Technical Details
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7 Appendix

8 Testing Hypotheses about Individual Coefficients

9 Testing Linear Hypotheses: A Simple Case

10 Testing Joint Significance

11 Testing Linear Hypotheses: The General Case

12 Fun With(out) Weights
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Limitation of the F Formula

Consider the following null hypothesis:

H0 : β1 = β2 = β3 = 3

or
H0 : β1 = 2β2 = 0.5β3 + 1

Can we test them using the F test?
To compute the F value, we need to fit the restricted model. How?

Some restrictions are difficult to impose when fitting the model.

Even when we can, the procedure will be ad hoc and require some
creativity.

Is there a general solution?
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General Procedure for Testing Linear Hypotheses

Notice that any set of q linear hypotheses can be written as

Rβ = r

where

I R is a q × (k + 1) matrix of prespecified coefficients on β (hypothesis
matrix)

I β = [β0 β1 · · · βk ]′

I r is a q × 1 vector of prespecified constants

Examples:

β1 = β2 = β3 = 3 ⇔

 β1
β2
β3

 =

 3
3
3

 ⇔
 0 1 0 0

0 0 1 0
0 0 0 1

 ·

β0
β1
β2
β3

 =

 3
3
3



β1 = 2β2 = 0.5β3+1 ⇔
[

β1 − 2β2
β1 − 0.5β3

]
=

[
0
1

]
⇔
[

0 1 −2 0
0 1 0 −0.5

]
·


β0
β1
β2
β3

 =

[
0
1

]
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Wald Statistic

Let’s consider testing H0 : Rβ = r, a set of q linear restrictions.

If H0 is true, Rβ̂ − r should be zero except for sampling variability.

To formally evaluate the statistical significance of the deviation from zero,
we must transform Rβ̂− r to a statistic that can be compared to a reference
distribution.

It turns out that the following Wald statistic can be used:

W =
(
Rβ̂ − r

)′
·
[
σ̂2R(X′X)−1R′

]−1 · (Rβ̂ − r
)

Looks complicated? Let’s figure out why this makes sense:

I The first and last components give the sum of squares of the
components of Rβ̂ − r. This summarizes its deviation from zero.

I The middle component is the variance of Rβ̂− r. This standardizes the
sum of squares to have variance one.

We know β̂ is approximately normal ⇒ Rβ̂ − r should also be normal
=⇒ W should therefore be ... χ2 distributed!
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Sampling Distribution of the Wald Statistic

Theorem (Large-Sample Distribution of the Wald Statistic)

Under Assumptions 1–5, as n→∞ the distribution of the Wald statistic approaches the
chi square distribution with q degrees of freedom:

W
d→ χ2

q as n→∞

Theorem (Small-Sample Distribution of the Wald Statistic)

Under Assumptions 1–6, for any sample size n the Wald statistic divided by q has the F
distribution with (q, n − k − 1) degrees of freedom:

W /q ∼ Fq,n−k−1

qFq,n−k−1
d→ χ2

q as n→∞, so the difference disappears when n large.
> pf(3.1, 2, 500,lower.tail=F) [1] 0.04591619

> pchisq(2*3.1, 2,lower.tail=F) [1] 0.0450492

> pf(3.1, 2, 50000,lower.tail=F) [1] 0.04505786
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Testing General Linear Hypotheses in R
In R, the linearHypothesis() function in the car package does the Wald test
for general linear hypotheses.

R Code
> fit.UR2 <- lm(REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd, data = D)

> R <- matrix(c(0,1,-1,0,0, 0,1,0,-1,0), nrow = 2, byrow = T)

> r <- c(0,0)

> linearHypothesis(fit.UR2, R, r)

Linear hypothesis test

Hypothesis:

Asia - LatAmerica = 0

Asia - Transit = 0

Model 1: restricted model

Model 2: REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd

Res.Df RSS Df Sum of Sq F Pr(>F)

1 82 738141635

2 80 736523836 2 1617798 0.0879 0.916
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Next Week (of Classes)

Linear Regression in the Social Sciences

Reading:
I Healy and Moody (2014) ”Data Visualization in Sociology” Annual

Review of Sociology
I Morgan and Winship (2015) Chapter 1: Causality and Empirical

Research in the Social Sciences
I Morgan and Winship (2015) Chapter 13.1: Objections to Adoption of

the Counterfactual Approach
I Optional: Morgan and Winship (2015) Chapter 2-3 (Potential

Outcomes and Causal Graphs)
I Optional: Hernán and Robins (2016) Chapter 1: A definition of a

causal effect.
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Fun Without Weights
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Improper Linear Models

Proper linear model is one where predictor variables are given
optimized weights in some way (for example through regression)

Meehl (1954) Clinical Versus Statistical Prediction: A Theoretical
Analysis and Review of the Evidence argued that proper linear models
outperform clinical intuition in many areas.

Dawes argues that even improper linear models (those where weights
are set by hand or set to be equal), outperform clinical intuition.

Equal weight models are argued to be quite robust for these
predictions
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Example: Graduate Admissions

Faculty rated all students in the psych department at University of
Oregon

Ratings predicted from a proper linear model of student GRE scores,
undergrad GPA and selectivity of student’s undergraduate institution.
Cross-validated correlation was .38

Correlation of faculty ratings with average rating of admissions
committee was .19

Standardized and equally weighted improper linear model, correlated
at .48
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Other Examples

Self-assessed measures of marital happiness: modeled with improper
linear model of (rate of lovemaking - rate of arguments):
correlation of .40

Einhorn (1972) study of doctors coding biopsies of patients with
Hodgkin’s disease and then rated severity. Their rating of severity was
essentially uncorrelated with survival times, but the variables they
coded predicted outcomes using a regression model.
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Other Examples

Column descriptions:

C1) average of human judges

C2) model based on human judges

C3) randomly chosen weights preserving signs

C4) equal weighting

C5) cross-validated weights

C6) unattainable optimal linear model
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The Argument

“People – especially the experts in a field – are much better at
selecting and coding information than they are at integrating it.”
(573)

The choice of variables is extremely important for prediction!

This parallels a piece of folk wisdom in the machine learning literature
that a better predictor will beat a better model every time.

People are good at picking out relevant information, but terrible at
integrating it.

The difficulty arises in part because people in general lack a strong
reference to the distribution of the predictors.

Linear models are robust to deviations from the optimal weights (see
also Waller 2008 on “Fungible Weights in Multiple Regression”)
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My Thoughts on the Argument

Particularly in prediction, looking for the true or right model can be
quixotic

The broader research project suggests that a big part of what
quantitative models are doing predictively, is focusing human talent in
the right place.

This all applies because predictors well chosen and the sample size is
small (so the weight optimization isn’t great)

It is a fascinating paper!
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